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Localization of a polymer in random media: Relation to the localization of a quantum particle
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In this paper we consider in detail the connection between the problem of a polymer in a random medium
and that of a quantum particle in a random potential. We are interested in a system of finite volume where the
polymer is known to béocalizedinside a low minimum of the potential. We show how the end-to-end distance
of a polymer that is free to move can be obtained from the density of states of the quantum particle using
extreme value statistics. We give a physical interpretation to the recently discovered one-step replica-
symmetry-breaking solution for the polym@Phys. Rev. E61, 1729 (2000] in terms of the statistics of
localized tail states. Numerical solutions of the variational equations for chains of different length are per-
formed and compared with quenched averages computed directly by using the eigenfunctions and eigenener-
gies of the Schidinger equation for a particle in a one-dimensional random potential. The quantities investi-
gated are the radius of gyration of a free Gaussian chain, its mean square distance from the origin and the
end-to-end distance of a tethered chain. The probability distribution for the position of the chain is also
investigated. The glassiness of the system is explained and is estimated from the variance of the measured
quantities.
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[. INTRODUCTION tion of a polymer in a random medium and that of a quantum
particle. There is extensive literature on electron localization
The behavior of polymer chains in random media is athat we would like to relate our results to. The second goal is
well-studied problenj1-8] that has applications in diverse to give further interpretation and a better physical picture of
fields. Besides the polymers themselves, this problem is dithe recently discovered variational solution for a polymer in
rectly related to the statistical mechanics of a quantum para random mediurfi7]. It turns out that these two goals inter-
ticle in a random potentidl9], the behavior of flux lines in  twine together by using the properties of the solutions of the
superconductors in the presence of columnar defé@d1,  Schralinger equation for a quantum particle in a random
and the problem of diffusion in a random catalytic environ-environment.
ment [4]. It was found in Refs[2—-4,7 that a very long Using the path integral mapping between the partition
Gaussian chain, immersed in a random medium with verfunction of a Gaussian polymer chain and the imaginary time
short-range correlations of the disorder, will typically curl up Schralinger equation, we show that the glassy behavior of
in some small region of low potential energy. The polymerthe polymer chain can be understood by studying the eigen-
chain is said to be localized and for long chains, the end-tofunctions of the Schidinger equation with a random poten-
end distance becomes independent of chain len@®h ( tial. In particular, the phenomenon of Anderson localization
~L9). For short chains, the end-to-end distance scales diffuf12,13 is crucial to understanding the glassy phase. We
sively (R~L). In a related papd®], it was found, using the present evidence that shows that polymer localization and
replica approach, that a quantum particle exhibits glassy beglassy behavior can be traced to the dominance of exponen-
havior at low-temperatures. The low temperature limit for atially localized tail states. We also explore various connec-
quantum particle translates into the long chain limit for poly-tions between typical glassy behavior, such as nonergodicity
mers. It implies that the free-energy landscape of a lon@nd the existence of many metastable states, to the properties
chain is typically very complicated and possesses manyf the eigenfunctions of the Schiimger equation.
metastable states. In order to describe the glass phase analytically, we utilize
Recently, a new variational solution has been found for a&he variational replica approach described in RET§.and
Gaussian chain embedded in a randéworrelated potential [9]. We further investigate and interpret the transition dis-
[7]. This solution, which involves replica-symmetry- covered there between a replica symmetric phase to a one-
breaking(RSB) at the one-step level, gives rise to the correctstep replica symmetry-breaking phase at a critical chain
behavior of the end-to-end distance of the chain as predicteléngth. The one-step breaking solution describes the local-
by the heuristic free-energy estimates of Cates and[B&ll  ized (glassy phase of the polymer and corresponds to the
It predicts the subtle loy dependence of the chain size, dominance of localized tail states. In the long chain limit, the
which was not present in the variational solution of Edwarddowest tail state in each realization of the disorder will domi-
and Muthukumarf2] due to the fact that their solution did nate the partition sum. On the other hand, the replica sym-
not contain enough variational parameters, and hence, diehetric phase corresponds to the case when a multitude of
not reflect the translational invariance of the original Hamil-extended states dominate the partition function. Our results
tonian. are substantiated by a numerical solution of the problem by
Our aim in this paper is twofold. The first goal is to solving the imaginary time Schdinger equation on a lattice
strengthen and elucidate the connection between the localiza: one spatial dimension.
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Il. MODEL where the overbar stands for the average of the ratio over the

realizations of the random potential. This average is referred

0 as a quenched average, as opposed to an annealed average,

where the numerator and denominator are averaged indepen-

dently. In some previous studies it has been argued that for
£, one can replace the quenched average by the more ana-

The simplest model of a polymer chain in random medi
is a Gaussiaifflexible) chain[14] in a medium of fixed ran-
dom obstacle$6]. In this paper we do not include a self-
avoiding interaction. This model can be described by th

Hamiltonian . ;
Iytically tractable annealed average. However, this replace-
2 ment can be justified only when the system size is strictly
L [M[dR(u) w S L ) y
H=| dul—=|——| + =R%u)+V(R(u))|, (2.1 Infinite, since only in that limit can the polymer sample all of
o [2) du 2 space and find the most favorable potential well that will be

similar to its environment in the annealed case. The main
whereR(u) is the d-dimensional position vector of a point problem with this approach is that in practice we always deal
on the polymer at arc-length (O<u<L), and wherel is  with finite-size systems, and it is not always easy to assess
the contour length of the chaimumber of linkg. The ran-  how big the system size has to be so that the annealed aver-
dom medium is described by a random poten¥i@iR) thatis  age is a good approximation to the quenched average. In
taken from a Gaussian distribution that satisfies addition, the time it takes the chain to sample a large volume

is exceedingly long and unreachable over a reasonable ex-

(V(R))=0, (V(R)V(R"))=f[(R-R")?]. (22  perimental ime.
In this paper, we will always deal with an explicitly finite

The harmonic term in the Hamiltonian is included to mimic System(both analytically and numericallyand so we will
the effects of finite volume. This is important to ensure thatonly compute quenched averages. For very large but finite
the model is well defined, since it turns out that certain equiSystems, the free chain is said to loealizedin the sense
librium properties of the polymer diverge in the infinite vol- that its configuration space is dominated by a single configu-
ume limit (w—0). The functionf characterizes the correla- ration in which the chain is being trapped in a single small
tions of the random potential, and will depend on theneighborhood. The size of the chain in an uncorrelated ran-
particglar problem at hanld. The parameMris equal to dom potential is given by3,7]
g{é,sb ), whereB=(kgT) -, and wheré is the Khun bond Ree(glny)~ 1) 2.6

In this paper, we will consider Gaussian distributed ran-,here) is the volume of the system. The depth of the well
dom media defined by the correlation function entrapping the chain is approximately

Vinin~ (g InV)2/4-9), 2.7

f[(R—R")?]= exd —(R—R")?%&]. (2.3

(mg?)d2 This is the binding energy per monomer. Thus, the binding
energy of the chain is given byV ..
Here, g determines the strength of the disorder and the pa- Another quantity of interest is the averaged mean-squared
rameter¢ controls the correlation range of the random me-displacement of the far end of a polymer with one end that is
dia. In the limit of é—0, f approaches al-dimensional fixed at the origin. This is a measure of the wandering of a
o-function. This was the case studied in Rd,7]. In the tethered polymer immersed in a random medium. This quan-
present paper we investigate only the case of short-rangity can be written as
correlations, i.e., the case of small

Once we have defined the Hamiltonian for any chain con-
figuration R(u), we can write the partition suniGreen’s

deRZZ(o,R;L)

function) for the set of paths of lengththat go fromR to R’ (RE(L))= : (2.9
as JdRZ(O,R;L)
sy [ROLD=R B It is important to distinguish between these two quantities
ZRREL)= fR -R [dR(u)Jexp(=BH). (2.4 since they measure different properties of the polymer chain.

Cates and Bal[3] and Nattermann and Ren#] discussed

All the statistical properties of the polymer will depend on the different behaviors of_thesg quantiti_e§ for a short-range
the partition sum. For instance, the end-to-end distdoce correlated random potential using heuristic arguments. In a

radius of gyratioh of a polymer chain that is free to move is €cent papef8], we have found analytically that the scaling
given by properties ofRg and Ry are also very different when the

disorder has long-range quadratic correlations. This is be-
cause in the case of a tethered chain, the free end of the chain
f dRdR’(R—R’)?Z(R,R’;L) seeks out favorable regions in the random medium that are
m: . (2.5 typically very far from the origin. When both ends are free
f dRAR'Z(R.R":L) then the entire chain will simply curl up in a favorable region
T in the random medium, and the end-to-end distance will not
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scale as fast. For the tethered chain, the quenched and an-

nealed averages are not expected to coincide even in the -

infinite volume limit, since a tethered chain can only sample 2M B 9R?

a finite volume of sizd.9, and even for largé, the environ-

ment near its tail cannot be adjusted since it is immobile.
Yet another quantity of interest is

1 4
el

2F“e2+V(F“e). (3.2

I

So for a given realization of the random potential, the poly-

mer partition sum can be expressed as a matrix element of

the imaginary time evolution operator. The matrix elements
can be expanded in eigenfunctions of the Hamiltonian opera-

deRZZ(R,R;L) tor to yield

, (2.9

(RG(L))=

deZ(R,R?L) (Rlexp—BLA)|R")= 3, expi— BLEm) Pr(R)PR(R'),

which measures the distance from the origaf the har- (3.3

monic potentigl to the averagécenter of magspositionofa  \ypere

free chain(more precisely of a free logplt is also relevant

to the related problem of a quantum particle in a random A® (R)=E,®(R). (3.4)

potential[9,15]. The relation between the polymer and the

quantum particle problems arises from the fact that the part is clear from the above relation that all properties of the

tition sum of a polymer chain can be mapped to the densityolymer chain will depend on the eigenvalues and the eigen-

matrix of a quantum particle. The mappif@16]is given by  nctions of the Hamiltonian operatét. For the problem at
hand we will have to understand these properties for the case

B, L= ph. (210 when the potentiaV/(R) is random and with the correlations

Then, p(R,R"; 8)=Z(R,R';L=Bk,B=1/4) is the density 9Ven in EqQ.(2.3 with a small¢. o
matrix of a quantum particle at inverse temperat@reNote The Schrdinger equation with a random potential is a
that the variablas is now interpreted as the Trottémagi- ~ Well-known problem that has been intensely studied for a
nary) time, andM as the mass of the quantum particle. Under'©"d time[12,13,17,25,25 The main property that we will
this mapping m can be interpreted as the averageuse is that wheV(R) has short-range correlatiofise., cor-
mean—squareéj d?splacement from the origin of a quantu relation length is shorter than any other length scale in the

article in a random plus harmonic potential centered at th roblem, and if the system size is infinite, then in any di-
grigin P P ension, all eigenstates with energy below a critical energy

Finally, we would like to remind the reader of the defini- Ey (referred to as the mobility edgare exponentially lo-

tion of the density of states for a quantum particle in a ran-CaIIZGd in the form

dom potential. We first define the quantfig3), which is the P (R)~exp—|R—R|// ). (3.5
two-sided Laplace transform of the density of stgi€g):
Here,R,, is the localization center of thath state, and’,, is

~ * the localization length of that state. The localization length
B | ext-pepEde @iy Dol 0 0
This function is given by 1/ m=BN2M|Ey, (3.6
- 1 - for E,<<0, i.e., deep in the tail region. Intuitively, it is easy
p(B)=1im ]—}j dRZ(R,R; B). (212  to verify these last two relations for the solution of the
v Schralinger equation for a particle in a one-dimensional,

nonrandom, attractives-function potential. This can be
thought to represent a local minimum of the random poten-
tial. In d dimensions, one can similarly consider a potential
of the form —v 6(r) and the lowest energy solution of the
IIl. PATH-INTEGRAL MAPPING radial equation(with zero angular momentunalso satisfies
The partition sum of the polymer chaif2.4) can be these relations. FOE>Ey,, extended states exist wheh
mapped to an imaginary time Sciinger equation. This 2. Ford=1,2 there is no mobility edge and all states are

mapping[see Ref[16] and Eqs.(3.12—(3.18] is given by exponentially localized. The states with enerdieskE,, are
called extended since they are no longer localized but are

We will make use of these quantities in the following sec-
tions.

R(L)=R spread over a finite fraction of the system. Also, it is known
Z(RR"L)= fR(O)R'[dR(u)]exp(—,BH[R(u)]) that the eigenvalues of the localized states are discrete, while
- the eigenvalues of the extended states form a continuum.
=(R|exp(— BLH)|R), (3.1) For finite system size, or ifu#0 in the Hamiltonian
given in Eq.(3.2), the above discussion has to be modified.
where First, the eigenfunctions are always discrete in any dimen-
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sion. But even in one dimension, as the energy increases, thehich is proportional to the probability of finding a loop of
width of the localized states eventually becomes comparabliength L passing through the poiR. Since the eigenstates
to the system size, and thus, a localized particle of that erfor low energies are localized, then for largave can write
ergy can go from one end of the sample to the other. Thus,
the distinction between localized and extended states be-
comes blurred for a finite system at energies much above the
ground state. Nevertheless, there will still be a qualitative Z(R,R;L)~>, exp—BLEy)exp —2|R—Ry|// ).
difference between the low energy tail states and the higher- m

- Y . (3.9
energy states with large localization lengths. For a finite sys-
tem (or when u#0) and for any given realization of the

random potential there will always be a lowest-energy state., . . . o -
that is by definition, the ground state for that realization. If(.erhIS implies that the probability of finding a long loop pass-

the volume is larggor x smal) it will correspond to one of ing throughR is conc:_antrated around the localization centers
the deep tail states of the infinite system. of the Iow—e.nergy elgen_states. Consequently, a very long
In order to study the effect of the eigenfunctions on thePPlymer chain will most likely be found at the ground-state
physical properties of the polymer chain, we simply app|ylo_cal|zat|on center. Wheh is small then the partition sum
Eq.(3.3). Itis clear that wher is large the partition sum is Will be dominated by the extended states, and so the prob-
dominated by contributions due to a few low-energy local-ability of finding a loop atR should be fairly uniform
ized states, while on the contrary lifis small, then most of ~throughout the system. In a later section we will analyze in
the contributions will come from the multitude of extended detail the evolution of the partition sum withby solving the
states. For simplicity, let us concentrate on the diagonal eleSchralinger equation on a lattice it=1.
ments of the evolution operator. Then All the physical properties of the polymer chain can be
expressed in terms of the eigenstates of the Rlhger
)= _ 2 equation. For instance, we can write the end-to-end distance
Z(RR:L) Em: SXH— BLEm) [ (R, S for a given realization of the random potential as

2
2> amf dRR2q>:n(R)—UdRRq>m(R) )exp(—,gLEm)
(RA(L)yy=—1 , 3.9
> |aml?exp(— BLEy)

wherea,,,= [dR® (R), and wherg - )y refers to a configu- the average localization length of the ground-state eigenfunc-
rational average for the case of a fixed realization of randontion. We see that fop— 0, the average is taken over the tail
potential. WhenlL is large enough so thaEg—E,)L>1, states of the Schdinger equation.

whereE; is the eigenvalue of the first excited state, then only When one end of the polymer is tethered to the origin,

the ground state contributes. In this case we have then the end-to-end distance can be expanded in eigenfunc-
, tions to yield
J dRR?® (R) J dRR®(R)
(RE(L))y=2 -2 , ; f dRR?®}(R)® (0)exp(— BLE,)
| aregm) | aregR) (RA(L))y=
(310 > f dRP7(R)P (0 expt — BLEr)
(3.11

where ®,(R) is the ground-state eigenfunction. It can be

shown that the ground-state wave function is positive defi- . o . :
) . - _ The presence of the terf,(0) is crucial since if the eigen-

nite and so in the largke limit (RZ(L))Y? can be interpreted P n(0) g

: ) ) . states are localized thef,(0)~exp(—|Ryl|//m), Which
as the width of the ground-state eigenfunction. Assuming th‘?neans that eigenstates localized far away from the origin
ground state has the form given in E8.5, we can write

5 2 ) L o may not contribute to the sum even if they may have very
(RE(L))y=2d(d+1)/ 55, where/q=/ is the localization o\ energies. Whet is not very large, the extended states
length of the ground state. Upon averaging over all realizayi; dominate the sums in Eq3.11) and the behavior of the
tions of the random potential, we get th@®7(L))=2d(d  end-to-end distance should be diffusiféRZ(L))y~L].

+ 1)/53, and so the quenched average of the end-to-end dis¥henL is large, but before the onset of ground-state domi-
tance, in the long chain limit, is proportional to the square ofnance, the sums in E¢3.11) will be dominated by localized
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eigenstates that are centered close to the origin. The free emnldice n copies of the system and average over the random
of the polymer chain will hop between localization centers agotential to get
L increases. This behavior has been investigated using Flory
arguments in Refg4,5] and both authors found a weakly  Z,({R.}.{R};L)=Z(R;,R;;L)- - Z(R,,R;;L)
sub-ballistic (R%(L))~L?/[In(L)]") behavior of the mean- .
squared displacement. For a finite system and whes _ [RaL)=Rg _
large enough, the ground state will always dominate and we jRa(O)—Ra a];'[l [dRaJexp = AHn).
get (R¥(L))y=d(d+1)/ 5.+ R,. Since the distance from
the ground state to the origin will typically be much larger
than the localization length, we find upon averaging thatyhere
(R¥(L))~RZ, and so the quenched average of the end-to-
end distance simply converges to the distance to the local- 1t dRa(u)
ization center of the ground state. This distance is of the HHZEJO d“; [M( du
order of the size of the system and is independent dthus,
the interesting sub-ballistit dependence ofR%(L)) arises
from the contribution of excited states and not from ground-
state dominance as for the case(BE(L)).

The mean-squared displacement defined in (B can

also be expanded in eigenfunctions as The averaged equilibrium properties of the polymer can now
be written in terms of the replicated partition sum

4.1

2
+uR3(U)

_E - L ' _ \12
2Joolufoolu % f{[R,(u)—Rp(u") 2.

4.2

Z,({R.}{Ra};L). For instance, the mean-squared end-to-
% f dRR?®(R)|?exp( — BLE) end distance defined in E(.5) can be written as
(RE(L))v= . B
> exp(— BLE) (RE(L))
m
3.1 / ' /
(312 | T 0R.IT ory(R,—R)2Z,((Ral (R L)
: = lim .
In the largeL limit, we find that(R(L))y=d(d+1)/;J4 ho ) N
+ Rgs. This is very similar to the case discussed in the pre- j H dRaH dRaZn({Ra} {Ra}iL)
vious paragraph, and we find upon averaging (h‘i%(L)) 4.3

~R3,. Which implies thafR(L)) becomes independent of

L. WhenL is small, then the extended states dominate andhus, the averaged equilibrium properties of the polymer can
we expect a behavior as if there is no random medium. For he extracted from am-body problem by taking the—0
polymer confined by a quadratic potential we find that in thislimit at the end. This limit has to be taken with care, by
case(RzQ(L))zd(,B,uL)*l. solving the problem analytically for genenal before taking

The re|ati0nship between the eigenstates of the "Schrdhe I|m|t Of n—>0. Unfortunately the replicated partition sum
dinger equation and the partition sum of the polymer chairf@nnot be evaluated analytically and a variational approach
can also be used to understand the behavior of the samplBas been used in Ref§7,9] to make further progress. The
to-sample variations of various physical properties of theProcedure is to follow the work of Feynmah6], Shakhnov-
chain. The sample-to-sample variations are important in orich and Gutin[19], and Mezard and Pari$20], and model
der to assess whether the averagmr many Samp|e$f a Hn by a solvable trial Ham”toniamln which is determined
physical quantity is an accurate measure of that quantity foPYy the stationarity of the variational free energy
a typical sample. For instance, the sample-to-sample varia- 1
tion of (RE(L))y is defined as\e=(RE(L))*~(RE(L)>.  n(F)=(H,—h.)n ——InJ [dR,]- - -[dR,Jexg — Bh,).

The sample-to-sample variation of a physical quantity is a n B
good measure of the glassiness of the system. 4.4

Note that the variational free energy also depends on the
IV. REPLICA VARIATIONAL APPROACH boundary conditions on the polymer chain. If we are inter-
) ) ) ) ested in the case when one end is fixed, then the partition
In this section we review the replica approach that was;,m should be over paths with one end fixed. In this
used in Refs[7] and[9] to compute quenched averages of caqe  the path integrals should be evaluated using
various physical properties of the polymer chain. Our goal iSde.J-Ri(L):Ri[dR‘] When both ends are free. one should
to give an interpretation for this formalism in terms of the " R;(0)=0 = (LR '

localized states picture of the corresponding Sdimger  use insteaddRidRi’fRfEO;;R',
equation. oo P (LY =R. ,
In order to compute the quenched average over the raifvaluate the partition sum W'tf‘dRifFRa:Eg;=g;[dRi]’ which
dom potential we apply the replica method. We first intro-yields the free energy of a polymer loop of contour length

[dR;]. Alternatively, one can
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The parameters that minimize the variational free energy for N1+ XSo+ (1—Xo)S1=p. 4.9

this case should be the same as for the case when both ends

are free, since in both cases, the polymer loop can be any¥/e proceeded to solve the equations of stationarity numeri-
where in the system. These are the boundary conditions thaglly using a standard iterative meth#]. Once the varia-
were used in Refl7], where only the polymer chain that is tional parameters have been found, we can obtain expres-

free to move was investigated. sions for various physical quantities. For instance, we find
The quadratic trial Hamiltonian has been parametr[zgd that
b
y ' X )
1t dR,(u)\? - sin M
hn=—f duX M( +uRA(W) RZ(L)) = 4.9
2 0 a du a ( F( )> B\/M_)\ ( )

+1

1 (L L 2
- duJ du’ > pa[Ra(u)—Rp(u)1?,
0 0 ab and also that

cos}‘( \/%L
(4.9 (

. o (Rog(L))=—| -+ —=+——=

where the matrix elemenfs,;, are the variational parameters. Q BLlw N 42 Xeu(u+X)

The physical motivation for this ansatz is that the replica-

replica interaction in the original Hamiltonian is modeled by d N L

a quadratic interaction that can be different for different rep- + ——=cot M2/ (4.10
lica pairs. Also, as noticed in Rdf7], the quadratic interac- 2BVMA

tion has the same translational invariance as the interaction, .« \we have PUE = x,(S;— So). Details of the numerical
c .

term in t_he orlg!nal Hamiltonian. The case when the repllca'results will be given in the next section. For largeand
replica interactions are the same,(=constanj corre-

. . small u it can be seen using the results obtained in R&f.
sponds to the case of long range quadratic correlations thﬂ"]at to leading order

was solved exactly in Ref8]. If we expand and simplify the

quadratic interaction we can rewrite the trial Hamiltonian as

- 2d
(RE(L))= , (4.1
2 M
hnzgdeuE {M(dza(u) +A\R2(u) s
0 a u and
1 (L L
+or . duf0 du % PapRa(U)-Ry(Uu"), (4.6 (Ré(L)>= Balx (4.12

whereN = u—2ppap. Here,\ is assumed to be independent yith
of the replica indexa, as is the case ip is a hierarchical
matrix. In Ref.[7], A was treated as an independent varia- d#(4-d)
tional parameter, and the condition= u—>,p,, €merged A= (Z)ZW
automatically as a result of the translational invariance of the m 4.13
disorder dependent term in the original hamiltonky. '

In the one-step RSB scheme, the mafpiy, can be pa- and

rametrized agp,p(x)] with

(,BZM )(4+d)/(47d)(g| In M|)4/(47d),

1 d—2 —1/(4-d)
gZBd+4Md|InM|d*2 ) (414)

- <x< Xe=1
p(X): SOa 0 X XC (47) C L (27T)d
—S1,  Xe<x<l1,
and wherex is Parisi’s replica index. In Ref7] p has been V. NUMERICAL PROCEDURE
denoted by\;—\. Thus, five variational parameters were  We check the validity of the analytical solution by nu-
used:\, N1, Sg, S1, andx.. The variational free energy was merically computing the quenched average of various physi-
expressed as a function of these variational parameters. Takal properties of the polymer. This is computationally inten-
ing the partial derivative with respect to the variational pa-sive because all quantities will have to be averaged over
rameters, and equating them to zero, one gets five nonlineanany realizations of the random potential. In this paper we
equations that could be solved analytically whewas large  will only concentrate on the case=1. Although this does
and u was small7]. In this paper we started from the same not correspond to a physical polymet= 3) we will still be
free energy and took its partial derivatives without simplify- able to check the validity of our analytical results for the
ing the expressions for larde As mentioned above, because special casel=1.
of the consequences of translational invariance, we could We evaluate numerically the right-hand side of E%3)
reduce the number of parameters and equations to four, sindg solving the Schidinger equation on a one-dimensional
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FIG. 1. A typical random sample witti=1/2. FIG. 2. Plot of(RZ(L)) vs L. The parameters alél=1/2, g
=25, B8=1, £&=1/\/2, andu=0.01. The dotted line is generated by
. . . . .. averaging over 10000 samples on a lattice of $ze40 with A
IattIC_e Of_N S|tes_[22]. The Iattl_ce Hamiltonian is ablxN =0.2. The error bars are found by computing the standard deviation
matrix with matrix elements given by of 10 sets of 1000 samples. The dashed line is the RS solution, and
1 the solid line is the RSB solution.
M .
Hij:_ﬁ(éi,jﬁ’l—i_&iﬁ’l,j)_k §A2(|_N/2)2 ] )
2MB°A Notice that the short-range correlation leads to a rugged

random potential landscape. The average mean-squared dis-
+V(i) |6, (5.1)  placement(RZ(L)) is computed by averaging over 10000
samples, and the error is estimated by computing the stan-
where the lattice spacing i&=S/N, and whereS is the  dard deviation of 10 sets of 1000 samples.
system size. Since we are interested in the continuum limit, We were able to find numerical solutions to the nonlinear
A will be kept small. Note that the indéxcorresponds to the stationarity equations. We found that for a given set of pa-
positionR;=Ai. We impose hard wall boundary conditions rameters there is a chain lendgth (which depends on the
at the end of the lattice. The eigenvalues and eigenvectorsirength of the disordesuch that for <L <L there is only
can now be found directly by diagonalizing the matrix usinga replica symmetric solution. This is the case when the varia-
a standard numerical routii@2]. Once these are known we tional parameters satisf.=1 andsy=s,. ForL>L_, there
can construct the partition sum at any valuelofising Eq. s still a replica symmetric solution, but we also find an ad-
(3.3). The partition sum can then be used to compute thelitional replica symmetry-breaking solution. So in this re-
quantity of interest, such a(RE(L))V. We repeat this pro- gime, we find an additional solution such that®.<1 and
cedure a large number of times and average the results to g&# s;. In order to decide which solution correctly describes

a numerical approximation t¢RZ(L)). the physics in that regime, we compare their respective pre-
The correlated Gaussian random potential described bgictions to the lattice computation 6RZ(L)) and(Ré(L)).
Eq. (2.3 is modeled by a sequence dfi numbers In Fig. 2 we plot the mean-squared displacem{@&g(L))

{Ve(i)}i—1,  n that obey(V (i)Ve(i+1))xexp(-A%%£%).  vs L for a given set of parameters. We plot this quantity
These numbers are then placed on a latticél sftes in the  using the lattice result, and also using the two predictions of
given order. To generate such numbers, we use an estaihe variational method. Note that in the labels of the plots,
lished method for generating correlated random numbershe average over the disorder is denoted by a second set of

The details of this method are described in REER,§]. brackets rather than an overbar.
For L belowL.~0.73, there is only a RS solution that is
VI. RESULTS AND DISCUSSION very close to the lattice prediction. Fargreater thar_ . the

_ , > > RS and RSB solutions are different and it is clear that the

A. Numerical and analytical results for (Re(L)) and (Ro(L)) RSB solution is closer to the lattice result. We can see that
Using the method described in the previous section, wéhe end-to-end distance saturates at a constant value as

compute(RZ(L)) on a lattice of size\=200(S=40). Here, increases. This behavior is correctly predicted by the RSB

we concentrate on the case where the random potential hg8lution but not by the RS solution. -

very short-range correlations. We generate random potential We now turn our attention to the quantifRg(L)). In

samples with correlation length=1/y2. In Fig. 1 we show Fig. 3 we pIot(Ré(L)) vs L using the lattice computation

a typical sample of 200 numbers from such a distribution. and also using the RS and RSB solutions. We can clearly see
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L
ot of (RZ(L)) h h FIG. 4. Plot of P(R,L) vs R for four values ofL. The bottom-
FIG. 3. Plot of(Rg(L)) vs L. The parameters are the same s y,,qt ¢ye is the random potential sample that is used. From bot-

those of Fig. 2 excepF that here we yse=0.3. The dotted line is tom to top we usé.=0.3,1,10,20. The parameters are the same as
generated by averaging over 10000 samples. The error bars Alfose used for Fig. 2

found by computing the standard deviation of 10 sets of 1000
samples. The dashed line is the RS solution, and the solid line is t

RSB solution. hi%creasmg_ until finally there is only one peak. This implies

that longer chains have a tendency to be found in a few
that when the RS solution differs from the RSB solution, thef@vorable regions in the sample, while short chains can be
RSB prediction is closer to the lattice prediction. Again, thefound with equal probability almost anywhere in the sample.
quantity(RéT)) becomes constant for lardeand this is Another observation is that the peaks in the distribution, for

correctly predicted by the RSB solution. For this quantity,me Casz$:1|’l%'20’ are _(Fﬁpce?]trateciharf)ttwd tr;]e v aI.Ieys of
similar results were obtained previously in Ref8] and € random landscape. 1his shows that the chain IS more

[15] likely to be found in regions of low average potential. As can
It is clear from Figs. 2 and 3 that the variational methodbe_l?ﬁen' thEl’tW'(itThOf the well IS aI?O mportgnt.b it q
with the quadratic ansatz in E@4.5 is quite effective in € results or tne previous section can beé better unaer-

describing the physical properties of the polymer chain. Th(,§t00.(.j py studying_the. properties of the gigenfqnctions Qf the
features predicted by the lattice computation are consis’terﬁcm(d'nger equation in a random potential. Using the eigen-

with a RS solution for chain lengths shorter thiapand a _unction expansion _in Eq(.3.7_) We can see th‘f(R'L) i_s
RSB solution for chains longer thdr, . In a later section, just a sum of the eigenfunctions squared weighted with the

; s : T ~BLEn i -
we will explore the physical interpretation of the variational dBoIttzman fﬁ'ctr?re' t ?0 tk;}e shat[;)]e C:T(R.’L) Its depir; t
solution and show that it is indeed consistent with the phys- ent on which eigenstates have the dominant weight at a

ics of the problem given chain lengthL. In Fig. 5, we plot a representative
' sample of the eigenfunctions for a typical random potential
sample.

B. Localized eigenstates and glassy behavior In order to get a more general picture of the structure of

In this section we explore, using the lattice computationthe eigenfunctions we measure for each eigenfunction the
the connection between the eigenstates of the Satger  width defined by
equation and the physical properties of the polymer chain.
We focus on the probability distribution defined BéR,L)
=Z(R,R,L)/fZ(R,R,L)dR, which can be interpreted as the
probability of finding a closed polymer chain of lendthihat
passes through the pO”R (for a given realization of the This width is Closely related to the localization Iengﬁﬂn
random potential We consider this probability distribution defined earlier. We then average this quantity over many
since it gives the most direct connection between the chairealizations of the random potential and in Fig. 6 we gt
properties and the eigenfunctions of the Sclimger equa- vsm.

wﬁqzj R2c1>$n(R)dR—U Rcbzm(R)dR)z. (6.1)

tion. In Fig. 4 we plotP(R,L) vs R for four different chain It is clear that asn is increased the width of the eigen-
lengths. We also include a plot of the random potentialfunctions also increase. Clearly, on average, the ground state
sample that is used. is the state with the smallest width. This explains why the

We can see clearly that the probability distribution distribution P(R,L) evolves withL into fewer and fewer
evolves from a flat distribution to distributions that are sharply localized peaks. This is just because the low-energy
sharply peaked at various locations in the sample. Also, arigenfunctions are sharply localized and they dominate the
important feature is that the number of peaks decreases withartition sum asL is increased. The higher excited states
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FIG. 5. F.>|0t o_fd)m(R) vs R From bottom up we plot the elgen FIG. 7. Plot ofw?|E,,| vs m for the lowest ten eigenfunctions.
functions withm=0,10,19,39. We use a lattice of si%e=40 with
- . We average over 10 000 samples and the parameters are the same as
A=0.133. All other parameters are the same as that of Fig. 2. that of Fig. 2

have typically large localization lengths, and these are the . . .
states that dominate the partition sum whers short. For graph whenl is large, is entirely due to the ground-state

the lowest states, we have verified the relatigp—1/E,,| .~ contribution. So the constafRE(L)) is just a consequence
In Fig. 7 we plotw_2 |E | vs mfor the lowest ten eigenfunc of ground state dominance. This is consistent with the results
: ml Em - r=VITENY
tions and show that it is nearly constant in agreement wit" S€¢- Il! Wh(:l’e we showed that for long chaifRz(L))
Eq. (3.6). =2d(d+1)(/gs), which is indeed independent bf We can
We now consider the role of the eigenfunctions on aver2lso see that the curved portion of the curve corresponds to
aged quantities such dR2(L)) and (R2(L)). In order to the case before ground-state dominance when a number of

study the effect of the eigenfunctions ()RE(L)) we trun- tail states contribute to the partition sum. For snhalle see

. . K ) that more than ten eigenfunctions are needed in order to cap-
cate the sum over eigenstate§ to = in the eigenfunction P ITEY

- >0 ( A ture the correct behavior gRZ(L)).
expansion in Eq(3.9). So by changing the indexwe can : : F o
o : As discussed in the previous paragraphs, it is clear that
rsne:n h(;\i/v etrrlfeur?(\:/tie(;?geareenlgetot ienn?hslz;ar;cnesgﬁplennﬁ? og Vr\]lgﬁve evolution of the partition sum is dependent on the nature
y €l P . € expan ' 9. of the eigenfunctions. Consequently, the sample-to-sample
plot the average end-to-end distar(@&g(L)) for a number
of differentj values. As expected, the flat portion of the

....................... 1} L ]
.... P
T / P
u.. 7 7
10 - - 1 Sy
A //
A 1
= /
A %I.I. /l
3 v 05 J
v
5| _
o’ 0 | I | !
soeee” 0 1 2 3 4 5
0 L L
0 74
m FIG. 8. Plot of(RZ(L)) vs L. The thick solid line is computed

_ using all the eigenfunctions. The thin solid line is found using
FIG. 6. Plot ofwy, vs m. We use a lattice of siz&=40 with  only the ground state. The long dashed line is using the first five
A=0.133 and plotwv,, for the first 75 eigenstates. We use 10 000 eigenfunctions and the short dashed line is using the first ten
samples and the parameters are the same as that of Fig. 2. eigenfunctions.
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FIG. 10. Plot of(R%(L)) vs L. The full circles are generated by
averaging over 10000 samples, and the error bars are found by
computing the standard deviation of 10 sets of 1000 samples. The
L . dashed lines are plots ¢R(L))2 vs L for five typical samples.
2 2 T \Y
variation O_f quantities such aRg(L))v _and<RQ(|_‘)>V are  The parameters are the same as in Fig. 2, only that here the system
also crucially dependent on the eigenfunctions. Thesgjze js four times largerg= 160) and we sei=0. We use a lattice
sample-to-sample variations are important since they providgs gog sites withA =0.2.
a measure of the glassiness of the system. In Fig. 9 we plot
the relative sample-to-sample fluctuatiahis/(RE(L)) vSL.  ~1073). We performed the computation on a large system
Itis clear again that as the length of the chain is increaseq,s= 160N =800) in order to minimize finite-size effects.
the sample-to-sample fluctuations also increase. Comparing |, Fig. 10 we pIot—<R$(L)> vs L and also include
Fig. 9 with Fig. 8, it is clear that the sample-to-sample quc—<R (L))Z vs L for five typical samples. Notice that for a
tuations increase rapidly at the same approximate valle of ivTen s;mple the end-to-end distar(@r(L»z has a ten-
at which the Izow-energy eigenstates begin to dominate th ency to cha|:1ge rapidly and then remain c\é)nstant As dis-
behavior of(RF(L))_. The reason for this is that distributions . <<oq in sec. lll, this is simply a consequence of hopping
dominated by localized states are strongly sample dep?nderﬂ)tetween localized states. That is, the free end of the polymer
On the oth.er hand, wheb is small and the hlgh—excned rapidly finds a deep wellwhich is also a localization cenjer
states dominate, the sample-to-sample fluctuations are sm d stays there. Upon averaging over 10 000 random samples
since the shape of the extended states do not depend stron find thatm rows linearly withL. for small L but
on the random sample. So we can conclude that for a poly- les fast tr: d'f% ion for | y The diffusive beh
mer i_n ghort range correlated random me(_jia, the glassy -Cha?prav(\e/ﬁeﬁsLeirs s?:alll i.i,]s:]%r: SOL:I‘ arzgen SGincleu:IIVsehoret ;\]’ém
acteristics are directly related to the dominance of localize Lhould not be affected by thep rangom media. The claim
eigenfunctions. . R
based on Flory type argumentst5] is that (R%(L))
~L2/[In(L)]” whenL is large. However, we were not able to
extract a consistent exponemtfor the range ofL that we
. . L = rraee explored. The reason for this is that our data is not accurate
_We will now.con5|der the end tq e_nd.dlstan@aT(L)) .enough to detect the precise logarithmic correction to scal-
Since one end is tethered to the origin, it turns out that th|§ng However we went ahead and tried to find the best power
qu?ntlty beha\ges very differently from the quantities law fit —<R2(L))ocLV for large L. We found that for 5L
. . . T .
(RF_l()LBj)_anSd<R?\(/L_)>. Tthedrepllcta yailha_ltlonal appré)ﬁch de- <25, the exponenv~1.74 yielded an excellent fit to the
\?v(flrlI oilylr:')reice'nt tr:z r;gsﬁltse %l;a':hiI?attil:secc?;ri’pirt]atioince’ ata. This result is consistent with the sub-ballistic prediction
For short-range correlations, we found that the numerica?S itis very close but slightly less than ballistic scalibg
method described in Sec. V was unreliable. The reason for D. Analysis of the variational solution

this is that the sum over energy eigenfunctions in Bcp) is
So far we have seen that the glassy characteristics of a

unstable since the overlap,(R)®(R’) (for short range
correlation$ is a number on the order of exp[R—R'|// ) polymer in a short-range correlated random potential is

which is typically extremely small. However, we were able closely related to the dominance of low-energy eigenfunc-
to evaluate Eq(3.3) accurately for smalk by solving the tions. We also know that the variational solution possesses a
Schralinger equation on a lattice using a fourth-orderRS solution forL <L, and an RSB solution foc>L.. Itis
Runge-Kutta algorithm with a very small time step ( well known that replica symmetry breaking is typically as-

FIG. 9. Plot ofAg/(RZ(L)) vs L. The parameters are the same
as in Fig. 2 and we average over 1000 samples.

C. Analysis of (R2(L))
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FIG. 11. Plot ofx. vs L. The parameters are the same as those FIG. 12. Plot of\ vs L. The parameters are the same as those
used in Fig. 2. used in Fig. 2.

sociated with glassy behavior, and for our model we show g¥t4-d

— 2 4+d)/(4—d 4/(4—d
that the onset of RSB is precisely when the system begins to - (Zw)zd/(zl—d)(ﬂ M) DD (glin w9,
exhibit glassy behavior. The variational parameter that best (6.3
reveals the transition between RS and RSB is the break point
Xe. If x;=1, then there is only an RS solution, and if 0 which is a constant independent lof
<Xc<1, then that corresponds to an RSB solution. In Fig. 11
we plotx, vs L using the same parameters that were used in VII. PHYSICAL INTERPRETATION
Fig. 2. OF THE ONE-STEP RSB SOLUTION

We can see that the onset of the RSB solution is at In this section, we study the physical interpretation of the

~0.73. If we compare this result to the plot&f /(RE(L))  replica symmetry breaking solution. Our purpose is to see if
vsLin Fig. 9, we see that near,~0.5 the sample-to-sample the underlying physical picture predicted by one-step RSB is
fluctuations begin to rise rapidly. This result provides strongindeed consistent with the presence of exponentially local-
evidence that when the RSB solution is valid, the polymerized eigenstates. We begin by evaluating the replicated par-
chain does indeed exhibit glassy behavior. tition sum defined as

In Ref.[7], approximate analytical solutions to the varia-
tional equations were found. This was for the case of large ~ Ra(L)=Ra .
small «, and a delta correlated random potentig0). It Zn({Ra})= JR - }1 [dRaJexp(—Bhy),  (7.0)
was found that : :
where h,, is the quadratic trial Hamiltonian in Eq4.5).
Since h,, is quadratic, the path integrals can be evaluated
analytically and the final result can we written in the form

1( go-2 ~1/(4—d)

gzﬁd+4Md|In M|d_2

(6.2

X:_
¢ Ll2m)d

- . Za({Ra}) = constx exp( - % > QuRaRy|. (7.2
We checked thé& dependence of; in Fig. 11 and indeed we ab

found thatx.«1/L. In fact, we found that this L/ depen-
dence is quite robust as it holds whenever there is a one-st
RSB solution. In a later section we will analyze the physical

consequences of this behavior and show that it can be simp SB scheme, it implies tha,, can also be parametrized in
explained via the path integral mapping to the Sdimger the same Wa)’/ ap

equation. , _ Mezard and Parisj20] (see also Ref[21]) discuss the
~InFig. 12, we plot the parametarvs L. The discontinu-  jnterpretation of a representation of the fo2) for the

ity is of course al., after which we plot only the one-step case of directed polymers. In particular they show how to
RSB solution. Notice that fot>L. X is essentially con- deduce the structure of the probability distribution

stant, which by Eq(4.9) implies that(RZ(L)) is also con-

stant. This result is consistent with the approximate analyti- 3 ~
cal solution in Ref[7], where it was found that Pv(R)=Zv(R,L) dRZ\(R,L), 73

051803-11
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which is the probability of finding a polymer loop that passes What is the meaning of these variables in the present
throughR for a given realizatioriwhich we denote by) of  case? To determine the weighté,, we compare Eq(7.9)

the random potential. Her&,(R,L) is just the partition sum to the eigenfunction expansion given in Eg.7). From Eq.
Z(R,R;L) as given in Eq(2.4). This probability is related to  (3.7) together with Eq(7.3) it becomes clear that

the replicated partition function given in E(/.1) by

- . PURI=2 A,|®,(R)]?, (7.19
PUR) = i | dRy AR Z,({Ra))eyr. (70 :
—0
" where

Mezard and Parisi’s analysis has to be adapted for the case of
real (nondirectedi polymers of lengthL in a random potential A= exp—BLE,) (7.12
that is independent of time. The changes will be pointed out “« ' '
below. > exp(—BLE,)

~ Y
If Qap is parametrized byq,q(x)} such that

Comparing Eq(7.8) and Eq.(7.12 it becomes obvious that
Qo X<X

q(x)=[ql . (7.9 W,=A,, (7.13

one proceeds to obtaif,(R) by the following procedure: and

(1) For each sampléa realization of the random potenfial (R-R,)?
generate a random variabRy, that is picked from the q)i(R)ocexp( . (7.14
distribution 2(q—dy)
2
P(Ry) = - p(—&). (7.6  Hence, the “states” labeled by are, in our case, the actual
(27q) 92 200 eigenstates of the imaginary time Satlirger operator Eq.

(2) Consider a set of “states” labeled by the indexvhose (3.4). These are localized tail states centered at poskRgn
physical meaning will be elucidated shortly. Each of With an associated “weight'W, . Thus, the one-step RSB
these states is characterized by a welghtand a posi- solution approximates the tail states by a f_ixed Gaussian
tion variableR,. Given R,, the variablesR, are an form. The width of thiese Gaussiang/{) as defined by Eq.
infinite set of uncorrelated random variables distributed(6.1) satisfieswg=d(q—q;), which for largeL can be

according to shown to converge tcvafvd/(Z,B\/)\M) (see Appendix
=RY Since\ becomes constant for largiethen so does the width
(Ra—Ro) : :
P(Ra):—d/zex _ . Wq. Thus, the one-step RSB solution approximates all the
[27(d1—0o)] 2(41~9o) localized states by a Gaussian of constant wigghwhich is

o _ . _ (7.7 the typical size of a long Gaussian chain embedded in a
The distribution of weights will be discussed below.  random potential. It also becomes evident that the free ener-
(3) Given these “states” for a given sample, the probability gies f, are equal td_E,. This makes sense if we think of

distribution Py(R) for that sample has the form |E.| as representing the binding energy per monomer, and
thus, f ,=LE, represents the total energy of the chain. Al-
1 (R—R,)? ternatively, one can start with the quantum particle picture
Py(R)=2, Wy————=——-exp ——=——|. and identifyf,, with E, but then in the transformation from
“ [27(a=qy)] 2(9—ay) 7.9 a quantum particle to a polymer one has to repladey BL,

and thus, ends up with the same expressions.

These arguments lead us to expect that within the one-
step RSB scheme, the energy varialiesare independent
random variables taken from an exponential distribution:

The weightsW, are given in terms of some “free en-
ergy” variablesf ,:

— f J—
w,= Al 7.9 PIE,J=ef X Cro(E-E,), (7.19
> exp(—Bf,) o _
Y with E being some energy scale determined by the upper

) cutoff of the tail region. We will now argue that the distri-
These free energy variables are chosen from an exponentig;tion given above is just the expected distribution of

distribution ground-state energies, i.e., the probability of finding the low-
_ est energy level to have enerByWe first review some very
Pfa]cexpx.Bf,) 0(f—1,), (7.10  basic results of extreme value statistics as presented in Ref.
o [24]. Given K independent and identically distributed ran-
wheref is an upper cutoff. dom variablesE; , pulled from a distribution of the form

051803-12



LOCALIZATION OF A POLYMER IN RANDOM MEDIA: ...

~ A
P(E)= ——exp —BIE|"),

|E]"

(7.1

the probability that the lowest of tH¢ energies isE (for E

— —o0 andK—) is given by
P(E)xexd BS|E|° 1E], (7.1

where

. :_(ln(K)>1/5'

PHYSICAL REVIEW E 63 051803

1

/NWEP/Z, (7.21)

where the mapping — 1/8 from the particle to the polymer
problem has been used. If we uBg for the value of the
lowest energy in a volum¥ we get an estimate fdRg, the
radius of gyration of a free chain that is in agreement with
Eq. (2.6).

When L—o most of the weightaV/,—0 and only the
weight with the lowesEk , will contribute significantly to the
distribution P(R). So in this limit, Py(R) will be approxi-
mated by a single Gaussian located somewhere in the

The value ofE., the lowest energy expected to be attaineds@mple. This result is consistent with ground-state domi-

in K trials, is easily obtained from

JECdETD(E)zllK. (7.19

nance as predicted by the corresponding eigenfunction ex-
pansion.

We now consider the distributioR(R,) given in Eg.
(7.7). This is just the distribution for the localization centers
R, for a given value ofR,. Hence, we can calculate the

The reason why we chose a distribution of the form givenaverage distance between the localized states for a given

in Eq.(7.16) is that ind= 1 the probabilityP(E) is known to

have that form exactly for the case of delta correlated ranS@

dom potential{see Ref[18]). Ford>1, Lifshits et al.[25]
argued that the form given by E@7.16 is also valid. Our
goal now is to see if the distribution E(/.15 derived using

the one-step RSB solution is indeed consistent with the dis- W2~ E92l(4fd)||n(M)|(d72)/(4fd)_
tribution Eq.(7.17) predicted using extreme value statistics. H

Comparing Eq(7.15 and Eq.(7.17) we find that for con-
sistency, the break point should satisfy

1)
XC:_Bl/b‘[ln(K)](b‘*l)/é.

AL (7.20

Notice that the 1/ behavior ofx. is exactly the same as was

found analytically for large. in Ref.[7] and numerically for
anyL>L. in the present work.

sample. We find that the widttv of the GaussiarP(R,)

tisfiesw?=d(q;—qo). For smallx and largeL we find
(see Appendix that w2~d/(BuLx.). Using the analytical
approximation forx, we find that

(7.22
We can also find the average distance from the origin to a
localization centeRR,. To do this we have to compute the
average probability to find a localization centerRyf. This
is

PR, | dRext — RE/(20p)]

x exd — (R,—R0)?1/[2(d1—qo)]

We can go further by using the fact that the number of

energy levelsK, within a fixed energy interval is directly
proportional to the system size, which in our formulation is

effectively determined byu. Assuming InK)x|In(u)| and
comparing to the approximate solution fqrin Eq. (6.2) we
find thats=(4—d)/2 andB1/g. Now P(E) is just propor-
tional to the density of statgs(E), and it is known exactly
in one dimension. Indeed, wheh=1, 6=23/2, andBoc1/g.

For 2<d<4, § agrees with the result derived by Lifshits
et al.[25] and Zittartz and Langd26]. Hence, the exponent

6 and the disorder dependenceBis correctly predicted by
the one-step RSB solution. The exponantannot be found

=ex —R%/(2q1)]. (7.23

If we estimate the average distance to a localization center to
be the width of the GaussiaP(R,), then w?=dq;
~d/(BuLx.) which is the same as the average distawce
between tail states derived above. This is because the fluc-
tuations ofR, are small compared to the fluctuationsRf

—Ry when the volume is large. Notice that this result is
consistent with our calculation fo(rRé(L)) in Eq. (4.10,
since forL Iarge(Ré(L)>~d/(,6’MLxc). These quantities
should be close since both give an approximation to the av-

since the statistics of the lowest energy depends only on therage distance to the ground state localization center.

exponential tail.

So far, we have studied the physical interpretation of the

The one-step RSB solution is thus in agreement with Eqone-step RSB solution, but recall that fox<L., there was
(7.17. Sincex.«1/L then the distribution of the energies only a RS solution. It is interesting to study the physical

predicted from Eq(7.15 is independent of. Note also that

implications of this RS solution. In this case, the probability

the value ofE, that gives a typical lowest energy for a given distribution Py(R) will have the simple form

volume of the system coincides with the expected value

given in Eq.(2.7) when one substitutes fad~1/g, 6= (4
—d)/2 and InK~InV in Eq. (7.18. The localization length,

(R—Rp)?
- ~ dlzeXp<_ ~
[27(9—do)] 2(9—do)

Py(R) ) . (7.29

that is the width of a localized state, is known to be related to

the energy of the state by

where the variabl& is taken from the distribution
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1 p( RZ ) density of statep(E), we can estimate the lowest enelgy
P(Rg)=——=exp — =—|. 7.2 b
( 0) (quo)d/z 2q0 ( 5) y
Notice that for a given sampl®,,(R) is approximated by a fEchp(E):llv. (8.2

Gaussian shifted from the origin by a distariRg The width
of this Gaussian can be shown to be essentially independent
of disorder in the limitu—0, as the widthw, satisfiesws  The size of a free Gaussian chain, in the long chain limit, is
~d(BuL) 1, which is the result for the case of zero disor- then given by
der. The average shift from the origin can be estimated by
the widthw, of the Gaussian in Ed7.25, which satisfies
wi~gpldt2)i2 (d+2)12,,(d=2)2 for the case of delta correla-
tions and large volumey— 0). This result is similar to that
found for the case of long-range correlated random media it is remarkable that starting from an annealed averdye
which it was found that the only effect of disorder is to shift density of states involves the average of the partition func-
the center of mass of the polymer chain from the origin.  tion) and using extreme value statistics plus the known rela-
We can conclude that the physical interpretation of thetionship between the localization length and the value of the
one-step RSB solution is consistent with that given by theail state energy, we can predict the behavior of a quenched
eigenfunction expansion. Clearly, the one-step RSB solutiomverage like the chain size.
captures the localized states and also correctly predicts some It is well known that glassy systems are notoriously dif-
important features of the eigenvalue distribution. Howeverficult to simulate using the Monte Carlo method since equili-
there are differences and these reveal the limitations of thbration times are exceedingly large. In the context of a poly-
one-step RSB solution. For example, all the localized statemer chain in a random medium, we expect that a long chain
are approximated by the same Gaussian profile when in faetill get trapped in the deep wells of the random potential and
the localization lengths should increase with energy. any local updating procedure, such as the Metropolis
scheme, will not be able to find the true minimum energy
configurations in a reasonable time. A workaround is to use a
simulated annealing procedufd5,21. Of course, these
The findings in this paper allow us to give a fairly com- traps are just those regions of the sample where an eigenstate
plete description of a polymer in random medium. We findwould be localized. They correspond to localized states with
that the size of a short polymer chain behaves as if there ignergies above the true ground state that exists for a finite-
no disorder, but that the position of the center of mass of theize system. Since the partition sum for a long chain is domi-
chain is strongly affected by the random media. Applying thenated by localized tail states, those chain configurations that
replica variational method, we find that short chains are welkre in the vicinity of such a state are overwhelmingly more
described by a RS solution. Also, using an eigenfunctiorfavorable than other configurations. All the classic character-
expansion we show that the partition sum of short chains igstics of a glassy system emergike trapping, metastability,
dominated by extended eigenstates. For long chains, thaging, and they have a clear physical origin in terms of the
physical picture becomes more interesting and complex. Wocalization picture.
find that long chains are likely to be localized in regions of
the sample where there is very low potential energy. These
regions correspond to localized tail states of the correspond-

ing Schralinger equation. As the length of the chain in-  Thjs research is supported by the U.S. Department of En-
creases, the number of dominant conformations decreaS@gy(DOE), Grant No. DE-G02-98ER45686. Y.Y.G. thanks

until finally, the chain is essentially localized in one small the Weizmann Institute for its hospitality while some of this
region, consistent with ground-state dominance. In terms ofgesearch was done.

the mapping from a chain to a quantum particle, a big chain
length corresponds to a very low temperature for the quan-
tum particle. APPENDIX

We show that the onset of the variational RSB solution to In this apoendi derive the relation bet th tri
the stationarity equations corresponds to the dominance of ppendix we derive the relation between the matrix
localized tail states. This one-step RSB solution correc:tI)Pab [see Eq(‘."'?)] char_acter_|zmg the variational hamiltonian
describes the glassy characteristics of the polymer chain suc?rpd the matrxQ,, defined in Eq(7.2. We start from
as large sample-to-sample variations. We have demonstrated

Re~[Ed Y2 8.2

VIIl. CONCLUDING REMARKS

ACKNOWLEDGMENTS

the clear physical picture associated with the abstract RSB Ra(L) =Ry
solution. Z(RLRH0= [T TRy Texet— o),
Our analysis also suggests a direct connection between Ra(0)=R, a=1 A1)

the size of a polymer in a random potential with short-range
correlations, and the localization length associated with the
lowest energy state in a system of finite volumeGiven the  with
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LOCALIZATION OF A POLYMER IN RANDOM MEDIA: ...

(a()

1 (L L
+—J duj du’E PapRa(U)-Rp(u’). (A2)
2L Jo 0 ab

+AR2(u)

n:_J UE

Let O, be an orthogonal matrix that diagonalizesg, by a
similarity transformation, and lgt;,, c=1, ... h be the ei-
genvalues op,,. We can expresg, in the form

Ac| [Ra(L=Ry."
fl_[ dA exp( 2 Z)J H [dRa(u)]
a(o) R a=

x ex] — Bha({AD)], (A3)
with
2
h({Ah) = fd E[ ( )"\ R2)
+§ V=pc/(BL)Oache-Ra(U) |- (A4)

The path integral can now be carried out using E§s39—
3.4)) in Ref.[16]. The result is

Zn:f H d)\cex;{—z % e 8P (A5)
where
:A(E R2+ >, Rgz)+8(2 Rat 2> R;)-V
+2C3, Ry-RL+DY V2, (AB)
with
= %W coth( L VA /M) (A7)

B=AM[coshiL\/M)—1][sinh(L\A/M)] "L (A8)

C=—%\/)\_M[(sinI"(L\/)\/M)]‘l (A9)
D=B—L\/2, (A10)
1
:X 2 \/_pc/(ﬁl—)oac)\c- (All)
Notice that
2 Vam a2 PN (A12)

We now putR,=R/ and integrate out ovex. to obtain

PHYSICAL REVIEW E 63 051803

Zn({Ra}i{Ra};L):NeX[{ —2,8% [(A+C)5ab

_IBBzMab] Ra' Rb) ’ (A13)

with
_ ! 1 ML -1 - Al4d
M=2p0\ 0P | - (A1)

Here we denoted by the unitnxX n matrix, andp stands for
the matrixp,,. Comparing with Eq(7.2) we find that

1
Qab=@{[<A+C)l—ﬂBZM]‘l}ab. (A15)

In the Appendix of Ref[20] one can find a formula for

the inverse of a hierarchical matrix. For the one-step RSB

case, the inverse of a matrix={p,p,.p.} is given byq
=p~ ! where

'a: 1 (1_ pO
[P—PoXc—P1(1—Xc)] P—PoXe— P1(1—Xc)
- 1-X
_ (P1=Po)( c>>, AL6)
P—pP1
Po
Jo=— = : (AL7)
[P—PoXe—P1(1—Xc)]?
- 1 (pl—po
q1=—= =

P—PoXc—P1(1=Xc) |\ p—p1

+= Po ) (A18)
P—PoXc— P1(1—Xc)
In the limit of largeL we have
1
A— E\/)\M, (A19)
B— VAM, (A20)
C—0, (A21)
LA

D—>—7+\/)\M. (A22)

In addition we use the one-step breaking results found in

Ref.[7]. Evaluating the matriXxQ in the limit of small u we
find to leading order
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~ 1 So 1
= + + +-- A23
a LxcBu  LBu? 2BVM\ (A23)
S0 (A24)
qo=
LBu?
1 So
d1 (A25)

= + +
LxcBu  LBu?

PHYSICAL REVIEW E63 051803

with the parameters andx. given in Eqs(4.13 and(4.14),
respectively, and, is given approximately by Ref7]

So=constx g~ VgL (g M\)~dd+2)8

A2+ 1| [ (@+2)/4

X 1 (A26)

We have also used the fact tiat=\ in this limit.
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