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Localization of a polymer in random media: Relation to the localization of a quantum particle

Yohannes Shiferaw and Yadin Y. Goldschmidt
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennyslvania 15260

~Received 3 November 2000; published 25 April 2001!

In this paper we consider in detail the connection between the problem of a polymer in a random medium
and that of a quantum particle in a random potential. We are interested in a system of finite volume where the
polymer is known to belocalizedinside a low minimum of the potential. We show how the end-to-end distance
of a polymer that is free to move can be obtained from the density of states of the quantum particle using
extreme value statistics. We give a physical interpretation to the recently discovered one-step replica-
symmetry-breaking solution for the polymer@Phys. Rev. E61, 1729 ~2000!# in terms of the statistics of
localized tail states. Numerical solutions of the variational equations for chains of different length are per-
formed and compared with quenched averages computed directly by using the eigenfunctions and eigenener-
gies of the Schro¨dinger equation for a particle in a one-dimensional random potential. The quantities investi-
gated are the radius of gyration of a free Gaussian chain, its mean square distance from the origin and the
end-to-end distance of a tethered chain. The probability distribution for the position of the chain is also
investigated. The glassiness of the system is explained and is estimated from the variance of the measured
quantities.

DOI: 10.1103/PhysRevE.63.051803 PACS number~s!: 36.20.Ey, 05.40.2a, 75.10.Nr, 64.60.Cn
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I. INTRODUCTION

The behavior of polymer chains in random media is
well-studied problem@1–8# that has applications in divers
fields. Besides the polymers themselves, this problem is
rectly related to the statistical mechanics of a quantum p
ticle in a random potential@9#, the behavior of flux lines in
superconductors in the presence of columnar defects@10,11#,
and the problem of diffusion in a random catalytic enviro
ment @4#. It was found in Refs.@2–4,7# that a very long
Gaussian chain, immersed in a random medium with v
short-range correlations of the disorder, will typically curl u
in some small region of low potential energy. The polym
chain is said to be localized and for long chains, the end
end distance becomes independent of chain lengthR2

;L0). For short chains, the end-to-end distance scales d
sively (R2;L). In a related paper@9#, it was found, using the
replica approach, that a quantum particle exhibits glassy
havior at low-temperatures. The low temperature limit fo
quantum particle translates into the long chain limit for po
mers. It implies that the free-energy landscape of a lo
chain is typically very complicated and possesses m
metastable states.

Recently, a new variational solution has been found fo
Gaussian chain embedded in a randomd-correlated potentia
@7#. This solution, which involves replica-symmetry
breaking~RSB! at the one-step level, gives rise to the corre
behavior of the end-to-end distance of the chain as predi
by the heuristic free-energy estimates of Cates and Ball@3#.
It predicts the subtle logV dependence of the chain siz
which was not present in the variational solution of Edwa
and Muthukumar@2# due to the fact that their solution di
not contain enough variational parameters, and hence,
not reflect the translational invariance of the original Ham
tonian.

Our aim in this paper is twofold. The first goal is t
strengthen and elucidate the connection between the loca
1063-651X/2001/63~5!/051803~16!/$20.00 63 0518
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tion of a polymer in a random medium and that of a quant
particle. There is extensive literature on electron localizat
that we would like to relate our results to. The second goa
to give further interpretation and a better physical picture
the recently discovered variational solution for a polymer
a random medium@7#. It turns out that these two goals inte
twine together by using the properties of the solutions of
Schrödinger equation for a quantum particle in a rando
environment.

Using the path integral mapping between the partit
function of a Gaussian polymer chain and the imaginary ti
Schrödinger equation, we show that the glassy behavior
the polymer chain can be understood by studying the eig
functions of the Schro¨dinger equation with a random poten
tial. In particular, the phenomenon of Anderson localizati
@12,13# is crucial to understanding the glassy phase. W
present evidence that shows that polymer localization
glassy behavior can be traced to the dominance of expo
tially localized tail states. We also explore various conn
tions between typical glassy behavior, such as nonergod
and the existence of many metastable states, to the prope
of the eigenfunctions of the Schro¨dinger equation.

In order to describe the glass phase analytically, we uti
the variational replica approach described in Refs.@7# and
@9#. We further investigate and interpret the transition d
covered there between a replica symmetric phase to a
step replica symmetry-breaking phase at a critical ch
length. The one-step breaking solution describes the lo
ized ~glassy! phase of the polymer and corresponds to
dominance of localized tail states. In the long chain limit, t
lowest tail state in each realization of the disorder will dom
nate the partition sum. On the other hand, the replica s
metric phase corresponds to the case when a multitud
extended states dominate the partition function. Our res
are substantiated by a numerical solution of the problem
solving the imaginary time Schro¨dinger equation on a lattice
in one spatial dimension.
©2001 The American Physical Society03-1
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II. MODEL

The simplest model of a polymer chain in random me
is a Gaussian~flexible! chain@14# in a medium of fixed ran-
dom obstacles@6#. In this paper we do not include a sel
avoiding interaction. This model can be described by
Hamiltonian

H5E
0

L

duFM

2 S dR~u!

du D 2

1
m

2
R2~u!1V„R~u!…G , ~2.1!

whereR(u) is the d-dimensional position vector of a poin
on the polymer at arc-lengthu (0<u<L), and whereL is
the contour length of the chain~number of links!. The ran-
dom medium is described by a random potentialV(R) that is
taken from a Gaussian distribution that satisfies

^V~R!&50, ^V~R!V~R8!&5 f @~R2R8!2#. ~2.2!

The harmonic term in the Hamiltonian is included to mim
the effects of finite volume. This is important to ensure th
the model is well defined, since it turns out that certain eq
librium properties of the polymer diverge in the infinite vo
ume limit (m→0). The functionf characterizes the correla
tions of the random potential, and will depend on t
particular problem at hand. The parameterM is equal to
d/(bb2), whereb5(kBT)21, and whereb is the Khun bond
step.

In this paper, we will consider Gaussian distributed ra
dom media defined by the correlation function

f @~R2R8!2#5
g

~pj2!d/2
exp@2~RÀR8!2/j2#. ~2.3!

Here,g determines the strength of the disorder and the
rameterj controls the correlation range of the random m
dia. In the limit of j→0, f approaches ad-dimensional
d-function. This was the case studied in Refs.@2,7#. In the
present paper we investigate only the case of short-ra
correlations, i.e., the case of smallj.

Once we have defined the Hamiltonian for any chain c
figuration R(u), we can write the partition sum~Green’s
function! for the set of paths of lengthL that go fromR to R8
as

Z~R,R8;L !5E
R(0)5R

R(L)5R8
@dR~u!#exp~2bH !. ~2.4!

All the statistical properties of the polymer will depend o
the partition sum. For instance, the end-to-end distance~or
radius of gyration! of a polymer chain that is free to move
given by

^RF
2~L !&5S E dRdR8~R2R8!2Z~R,R8;L !

E dRdR8Z~R,R8;L !
D , ~2.5!
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where the overbar stands for the average of the ratio over
realizations of the random potential. This average is refer
to as a quenched average, as opposed to an annealed av
where the numerator and denominator are averaged inde
dently. In some previous studies it has been argued tha
RF , one can replace the quenched average by the more
lytically tractable annealed average. However, this repla
ment can be justified only when the system size is stric
infinite, since only in that limit can the polymer sample all
space and find the most favorable potential well that will
similar to its environment in the annealed case. The m
problem with this approach is that in practice we always d
with finite-size systems, and it is not always easy to ass
how big the system size has to be so that the annealed a
age is a good approximation to the quenched average
addition, the time it takes the chain to sample a large volu
is exceedingly long and unreachable over a reasonable
perimental time.

In this paper, we will always deal with an explicitly finit
system~both analytically and numerically! and so we will
only compute quenched averages. For very large but fi
systems, the free chain is said to belocalized in the sense
that its configuration space is dominated by a single confi
ration in which the chain is being trapped in a single sm
neighborhood. The size of the chain in an uncorrelated r
dom potential is given by@3,7#

RF}~g ln V!21/(42d), ~2.6!

whereV is the volume of the system. The depth of the w
entrapping the chain is approximately

Vmin;~g ln V!2/(42d). ~2.7!

This is the binding energy per monomer. Thus, the bind
energy of the chain is given byLVmin .

Another quantity of interest is the averaged mean-squa
displacement of the far end of a polymer with one end tha
fixed at the origin. This is a measure of the wandering o
tethered polymer immersed in a random medium. This qu
tity can be written as

^RT
2~L !&5S E dRR2Z~0,R;L !

E dRZ~0,R;L !
D . ~2.8!

It is important to distinguish between these two quantit
since they measure different properties of the polymer ch
Cates and Ball@3# and Nattermann and Renz@4# discussed
the different behaviors of these quantities for a short-ra
correlated random potential using heuristic arguments. I
recent paper@8#, we have found analytically that the scalin
properties ofRF and RT are also very different when th
disorder has long-range quadratic correlations. This is
cause in the case of a tethered chain, the free end of the c
seeks out favorable regions in the random medium that
typically very far from the origin. When both ends are fre
then the entire chain will simply curl up in a favorable regio
in the random medium, and the end-to-end distance will
3-2
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LOCALIZATION OF A POLYMER IN RANDOM MEDIA: . . . PHYSICAL REVIEW E 63 051803
scale as fast. For the tethered chain, the quenched and
nealed averages are not expected to coincide even in
infinite volume limit, since a tethered chain can only sam
a finite volume of sizeLd, and even for largeL, the environ-
ment near its tail cannot be adjusted since it is immobile

Yet another quantity of interest is

^RQ
2 ~L !&5S E dRR2Z~R,R;L !

E dRZ~R,R;L !
D , ~2.9!

which measures the distance from the origin~of the har-
monic potential! to the average~center of mass! position of a
free chain~more precisely of a free loop!. It is also relevant
to the related problem of a quantum particle in a rand
potential @9,15#. The relation between the polymer and t
quantum particle problems arises from the fact that the p
tition sum of a polymer chain can be mapped to the den
matrix of a quantum particle. The mapping@9,16# is given by

b→1/\, L→b\. ~2.10!

Then, r(R,R8;b)5Z(R,R8;L5b\,b51/\) is the density
matrix of a quantum particle at inverse temperatureb. Note
that the variableu is now interpreted as the Trotter~imagi-
nary! time, andM as the mass of the quantum particle. Und
this mapping,^RQ

2 (L)& can be interpreted as the avera
mean-squared displacement from the origin of a quan
particle in a random plus harmonic potential centered at
origin.

Finally, we would like to remind the reader of the defin
tion of the density of states for a quantum particle in a r
dom potential. We first define the quantityr̃(b), which is the
two-sided Laplace transform of the density of statesr(E):

r̃~b!5E
2`

`

exp~2bE!r~E!dE. ~2.11!

This function is given by

r̃~b!5 lim
V→`

1

VE dRZ~R,R;b!. ~2.12!

We will make use of these quantities in the following se
tions.

III. PATH-INTEGRAL MAPPING

The partition sum of the polymer chain~2.4! can be
mapped to an imaginary time Schro¨dinger equation. This
mapping@see Ref.@16# and Eqs.~3.12!–~3.18!# is given by

Z~R,R8;L !5E
R(0)5R8

R(L)5R
@dR~u!#exp„2bH@R~u!#…

5^Ruexp~2bLĤ !uR8&, ~3.1!

where
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Ĥ52
1

2Mb2

]2

]R̂2
1

m

2
R̂21V~R̂!. ~3.2!

So for a given realization of the random potential, the po
mer partition sum can be expressed as a matrix elemen
the imaginary time evolution operator. The matrix eleme
can be expanded in eigenfunctions of the Hamiltonian ope
tor to yield

^Ruexp~2bLĤ !uR8&5 (
m50

`

exp~2bLEm!Fm~R!Fm* ~R8!,

~3.3!

where

ĤFm~R!5EmFm~R!. ~3.4!

It is clear from the above relation that all properties of t
polymer chain will depend on the eigenvalues and the eig
functions of the Hamiltonian operatorĤ. For the problem at
hand we will have to understand these properties for the c
when the potentialV(R) is random and with the correlation
given in Eq.~2.3! with a smallj.

The Schro¨dinger equation with a random potential is
well-known problem that has been intensely studied fo
long time @12,13,17,25,26#. The main property that we will
use is that whenV(R) has short-range correlations~i.e., cor-
relation length is shorter than any other length scale in
problem!, and if the system size is infinite, then in any d
mension, all eigenstates with energy below a critical ene
EM ~referred to as the mobility edge! are exponentially lo-
calized in the form

Fm~R!;exp~2uR2Rmu/l m!. ~3.5!

Here,Rm is the localization center of themth state, andl m is
the localization length of that state. The localization leng
satisfies

1/l m5bA2M uEmu, ~3.6!

for Em!0, i.e., deep in the tail region. Intuitively, it is eas
to verify these last two relations for the solution of th
Schrödinger equation for a particle in a one-dimension
nonrandom, attractived-function potential. This can be
thought to represent a local minimum of the random pot
tial. In d dimensions, one can similarly consider a potent
of the form 2vd(r ) and the lowest energy solution of th
radial equation~with zero angular momentum! also satisfies
these relations. ForE.EM , extended states exist whend
.2. For d51,2 there is no mobility edge and all states a
exponentially localized. The states with energiesE.EM are
called extended since they are no longer localized but
spread over a finite fraction of the system. Also, it is know
that the eigenvalues of the localized states are discrete, w
the eigenvalues of the extended states form a continuum

For finite system size, or ifmÞ0 in the Hamiltonian
given in Eq.~3.2!, the above discussion has to be modifie
First, the eigenfunctions are always discrete in any dim
3-3
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sion. But even in one dimension, as the energy increases
width of the localized states eventually becomes compar
to the system size, and thus, a localized particle of that
ergy can go from one end of the sample to the other. Th
the distinction between localized and extended states
comes blurred for a finite system at energies much above
ground state. Nevertheless, there will still be a qualitat
difference between the low energy tail states and the hig
energy states with large localization lengths. For a finite s
tem ~or when mÞ0) and for any given realization of th
random potential there will always be a lowest-energy s
that is by definition, the ground state for that realization.
the volume is large~or m small! it will correspond to one of
the deep tail states of the infinite system.

In order to study the effect of the eigenfunctions on t
physical properties of the polymer chain, we simply app
Eq. ~3.3!. It is clear that whenL is large the partition sum is
dominated by contributions due to a few low-energy loc
ized states, while on the contrary, ifL is small, then most of
the contributions will come from the multitude of extend
states. For simplicity, let us concentrate on the diagonal
ments of the evolution operator. Then

Z~R,R;L !5(
m

exp~2bLEm!uFm~R!u2, ~3.7!
o

nl

be
efi

th

za

d
o
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which is proportional to the probability of finding a loop o
length L passing through the pointR. Since the eigenstate
for low energies are localized, then for largeL we can write

Z~R,R;L !;(
m

exp~2bLEm!exp~22uR2Rmu/l m!.

~3.8!

This implies that the probability of finding a long loop pas
ing throughR is concentrated around the localization cent
of the low-energy eigenstates. Consequently, a very l
polymer chain will most likely be found at the ground-sta
localization center. WhenL is small then the partition sum
will be dominated by the extended states, and so the p
ability of finding a loop atR should be fairly uniform
throughout the system. In a later section we will analyze
detail the evolution of the partition sum withL by solving the
Schrödinger equation on a lattice ind51.

All the physical properties of the polymer chain can
expressed in terms of the eigenstates of the Schro¨dinger
equation. For instance, we can write the end-to-end dista
for a given realization of the random potential as
^RF
2~L !&V5

2(
m

S amE dRR2Fm* ~R!2U E dRRFm~R!U2Dexp~2bLEm!

(
m

uamu2exp~2bLEm!

, ~3.9!
nc-
il

in,
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wheream5*dRFm(R), and wherê •&V refers to a configu-
rational average for the case of a fixed realization of rand
potential. WhenL is large enough so that (E12Egs)L@1,
whereE1 is the eigenvalue of the first excited state, then o
the ground state contributes. In this case we have

^RF
2~L !&V52

E dRR2Fgs~R!

E dRFgs~R!

22S E dRRFgs~R!

E dRFgs~R!
D 2

,

~3.10!

where Fgs(R) is the ground-state eigenfunction. It can
shown that the ground-state wave function is positive d
nite and so in the largeL limit ^RF

2(L)&1/2 can be interpreted
as the width of the ground-state eigenfunction. Assuming
ground state has the form given in Eq.~3.5!, we can write
^RF

2(L)&V52d(d11)l gs
2 , wherel gs5l 0 is the localization

length of the ground state. Upon averaging over all reali
tions of the random potential, we get that^RF

2(L)&52d(d
11)l gs

2 , and so the quenched average of the end-to-end
tance, in the long chain limit, is proportional to the square
m

y

-

e

-

is-
f

the average localization length of the ground-state eigenfu
tion. We see that form→0, the average is taken over the ta
states of the Schro¨dinger equation.

When one end of the polymer is tethered to the orig
then the end-to-end distance can be expanded in eigenf
tions to yield

^RT
2~L !&V5

(
m

E dRR2Fm* ~R!Fm~0!exp~2bLEm!

(
m

E dRFm* ~R!Fm~0!exp~2bLEm!

.

~3.11!

The presence of the termFm(0) is crucial since if the eigen-
states are localized thenFm(0);exp(2uRmu/l m), which
means that eigenstates localized far away from the or
may not contribute to the sum even if they may have v
low energies. WhenL is not very large, the extended stat
will dominate the sums in Eq.~3.11! and the behavior of the
end-to-end distance should be diffusive@^RT

2(L)&V;L#.
WhenL is large, but before the onset of ground-state dom
nance, the sums in Eq.~3.11! will be dominated by localized
3-4
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LOCALIZATION OF A POLYMER IN RANDOM MEDIA: . . . PHYSICAL REVIEW E 63 051803
eigenstates that are centered close to the origin. The free
of the polymer chain will hop between localization centers
L increases. This behavior has been investigated using F
arguments in Refs.@4,5# and both authors found a weak
sub-ballistic (̂ RT

2(L)&;L2/@ ln(L)#g) behavior of the mean
squared displacement. For a finite system and whenL is
large enough, the ground state will always dominate and
get ^RT

2(L)&V5d(d11)l gs
2 1Rgs

2 . Since the distance from
the ground state to the origin will typically be much larg
than the localization length, we find upon averaging t
^RT

2(L)&'Rgs
2 , and so the quenched average of the end

end distance simply converges to the distance to the lo
ization center of the ground state. This distance is of
order of the size of the system and is independent ofL. Thus,
the interesting sub-ballisticL dependence of̂RT

2(L)& arises
from the contribution of excited states and not from groun
state dominance as for the case of^RF

2(L)&.
The mean-squared displacement defined in Eq.~2.9! can

also be expanded in eigenfunctions as

^RQ
2 ~L !&V5

(
m

E dRR2uFm~R!u2exp~2bLEm!

(
m

exp~2bLEm!

.

~3.12!

In the largeL limit, we find that ^RQ
2 (L)&V5d(d11)l gs

2 /4
1Rgs

2 . This is very similar to the case discussed in the p
vious paragraph, and we find upon averaging that^RQ

2 (L)&
'Rgs

2 . Which implies that̂ RQ
2 (L)& becomes independent o

L. WhenL is small, then the extended states dominate
we expect a behavior as if there is no random medium. F
polymer confined by a quadratic potential we find that in t
case^RQ

2 (L)&5d(bmL)21.
The relationship between the eigenstates of the Sc¨-

dinger equation and the partition sum of the polymer ch
can also be used to understand the behavior of the sam
to-sample variations of various physical properties of
chain. The sample-to-sample variations are important in
der to assess whether the average~over many samples! of a
physical quantity is an accurate measure of that quantity
a typical sample. For instance, the sample-to-sample va
tion of ^RF

2(L)&V is defined asDF5^RF
2(L)&22^RF

2(L)&2.
The sample-to-sample variation of a physical quantity i
good measure of the glassiness of the system.

IV. REPLICA VARIATIONAL APPROACH

In this section we review the replica approach that w
used in Refs.@7# and @9# to compute quenched averages
various physical properties of the polymer chain. Our goa
to give an interpretation for this formalism in terms of th
localized states picture of the corresponding Schro¨dinger
equation.

In order to compute the quenched average over the
dom potential we apply the replica method. We first intr
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duce n copies of the system and average over the rand
potential to get

Zn~$Ra%,$Ra8%;L !5Z~R1 ,R18 ;L !•••Z~Rn ,Rn8 ;L !

5E
Ra(0)5Ra

Ra(L)5Ra8 )
a51

n

@dRa#exp~2bHn!,

~4.1!

where

Hn5
1

2E0

L

du(
a

FM S dRa~u!

du D 2

1mRa
2~u!G

2
b

2E0

L

duE
0

L

du8(
ab

f $@Ra~u!2Rb~u8!#2%.

~4.2!

The averaged equilibrium properties of the polymer can n
be written in terms of the replicated partition su
Zn($Ra%,$Ra%;L). For instance, the mean-squared end-
end distance defined in Eq.~2.5! can be written as

^RF
2~L !&

5 lim
n→0

E ) dRa) dRa8~R12R18!2Zn~$Ra%,$Ra8%;L !

E ) dRa) dRa8Zn~$Ra%,$Ra8%;L !

.

~4.3!

Thus, the averaged equilibrium properties of the polymer
be extracted from ann-body problem by taking then→0
limit at the end. This limit has to be taken with care, b
solving the problem analytically for generaln, before taking
the limit of n→0. Unfortunately the replicated partition sum
cannot be evaluated analytically and a variational appro
has been used in Refs.@7,9# to make further progress. Th
procedure is to follow the work of Feynman@16#, Shakhnov-
ich and Gutin@19#, and Mezard and Parisi@20#, and model
Hn by a solvable trial Hamiltonianhn which is determined
by the stationarity of the variational free energy

n^F&5^Hn2hn&hn
2

1

b
lnE @dR1#•••@dRn#exp~2bhn!.

~4.4!

Note that the variational free energy also depends on
boundary conditions on the polymer chain. If we are int
ested in the case when one end is fixed, then the parti
sum should be over paths with one end fixed. In t
case, the path integrals should be evaluated us
*dRi*Ri (0)50

Ri (L)5Ri@dRi #. When both ends are free, one shou

use instead*dRidRi8*
Ri (0)5R

i8

Ri (L)5Ri @dRi #. Alternatively, one can

evaluate the partition sum with*dRi*Ri (0)5Ri

Ri (L)5Ri@dRi #, which

yields the free energy of a polymer loop of contour lengthL.
3-5



fo
e

an
th
s

s.
a

by
p

-
ti

ca

th

a

nt

ia

th

re
s
Ta
a

ne

e
y-
e
u
in

eri-

res-
nd

-
ysi-
n-
ver
we

e

al
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The parameters that minimize the variational free energy
this case should be the same as for the case when both
are free, since in both cases, the polymer loop can be
where in the system. These are the boundary conditions
were used in Ref.@7#, where only the polymer chain that i
free to move was investigated.

The quadratic trial Hamiltonian has been parametrized@7#
by

hn5
1

2E0

L

du(
a

FM S dRa~u!

du D 2

1mRa
2~u!G

2
1

4LE0

L

duE
0

L

du8(
ab

pab@Ra~u!2Rb~u8!#2,

~4.5!

where the matrix elementspab are the variational parameter
The physical motivation for this ansatz is that the replic
replica interaction in the original Hamiltonian is modeled
a quadratic interaction that can be different for different re
lica pairs. Also, as noticed in Ref.@7#, the quadratic interac
tion has the same translational invariance as the interac
term in the original Hamiltonian. The case when the repli
replica interactions are the same (pab5constant) corre-
sponds to the case of long range quadratic correlations
was solved exactly in Ref.@8#. If we expand and simplify the
quadratic interaction we can rewrite the trial Hamiltonian

hn5
1

2E0

L

du(
a

FM S dRa~u!

du D 2

1lRa
2~u!G

1
1

2LE0

L

duE
0

L

du8(
ab

pabRa~u!•Rb~u8!, ~4.6!

wherel5m2(bpab . Here,l is assumed to be independe
of the replica indexa, as is the case ifp is a hierarchical
matrix. In Ref. @7#, l was treated as an independent var
tional parameter, and the conditionl5m2(bpab emerged
automatically as a result of the translational invariance of
disorder dependent term in the original hamiltonianHn .

In the one-step RSB scheme, the matrixpab can be pa-
rametrized as@ p̃,p(x)# with

p~x!5H 2s0 , 0,x,xc

2s1 , xc,x,1,
~4.7!

and wherex is Parisi’s replica index. In Ref.@7# p̃ has been
denoted byl12l. Thus, five variational parameters we
used:l, l1 , s0 , s1 , andxc . The variational free energy wa
expressed as a function of these variational parameters.
ing the partial derivative with respect to the variational p
rameters, and equating them to zero, one gets five nonli
equations that could be solved analytically whenL was large
andm was small@7#. In this paper we started from the sam
free energy and took its partial derivatives without simplif
ing the expressions for largeL. As mentioned above, becaus
of the consequences of translational invariance, we co
reduce the number of parameters and equations to four, s
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l11xcs01~12xc!s15m. ~4.8!

We proceeded to solve the equations of stationarity num
cally using a standard iterative method@22#. Once the varia-
tional parameters have been found, we can obtain exp
sions for various physical quantities. For instance, we fi
that

^RF
2~L !&5

2d

bAMl

sinhSAl

M
L D

FcoshSAl

M
L D 11G , ~4.9!

and also that

^RQ
2 ~L !&5

d

bL S 1

m
2

1

l
1

s0

m2
1

~12xc!S

xcm~m1S!D
1

d

2bAMl
cothSAl

M

L

2D , ~4.10!

where we have putS5xc(s12s0). Details of the numerical
results will be given in the next section. For largeL and
small m it can be seen using the results obtained in Ref.@7#
that to leading order

^RF
2~L !&5

2d

bAMl
, ~4.11!

and

^RQ
2 ~L !&5

1

bmLxc
, ~4.12!

with

l5
d4/(42d)

~2p!2d/(42d)
~b2M !(41d)/(42d)~gu ln mu!4/(42d),

~4.13!

and

xc5
1

L S dd22

~2p!d
g2bd14Mdu ln mud22D 21/(42d)

. ~4.14!

V. NUMERICAL PROCEDURE

We check the validity of the analytical solution by nu
merically computing the quenched average of various ph
cal properties of the polymer. This is computationally inte
sive because all quantities will have to be averaged o
many realizations of the random potential. In this paper
will only concentrate on the cased51. Although this does
not correspond to a physical polymer (d53) we will still be
able to check the validity of our analytical results for th
special cased51.

We evaluate numerically the right-hand side of Eq.~3.3!
by solving the Schro¨dinger equation on a one-dimension
3-6
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lattice of N sites @22#. The lattice Hamiltonian is anN3N
matrix with matrix elements given by

Hi j 52
1

2Mb2D2
~d i , j 111d i 11,j !1S m

2
D2~ i 2N/2!2

1V~ i ! D d i , j , ~5.1!

where the lattice spacing isD5S/N, and whereS is the
system size. Since we are interested in the continuum li
D will be kept small. Note that the indexi corresponds to the
positionRi5D i . We impose hard wall boundary condition
at the end of the lattice. The eigenvalues and eigenvec
can now be found directly by diagonalizing the matrix usi
a standard numerical routine@22#. Once these are known w
can construct the partition sum at any value ofL using Eq.
~3.3!. The partition sum can then be used to compute
quantity of interest, such aŝRF

2(L)&V . We repeat this pro-
cedure a large number of times and average the results t
a numerical approximation tôRF

2(L)&.
The correlated Gaussian random potential described

Eq. ~2.3! is modeled by a sequence ofN numbers
$Vj( i )% i 51, . . . ,N that obey^Vj( i )Vj( i 1 l )&}exp(2D2l2/j2).
These numbers are then placed on a lattice ofN sites in the
given order. To generate such numbers, we use an e
lished method for generating correlated random numb
The details of this method are described in Refs.@23,8#.

VI. RESULTS AND DISCUSSION

A. Numerical and analytical results for ŠRF
2
„L …‹ and ŠRQ

2
„L …‹

Using the method described in the previous section,
computê RF

2(L)& on a lattice of sizeN5200 ~S540!. Here,
we concentrate on the case where the random potentia
very short-range correlations. We generate random pote
samples with correlation lengthj51/A2. In Fig. 1 we show
a typical sample of 200 numbers from such a distribution

FIG. 1. A typical random sample withj51/A2.
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Notice that the short-range correlation leads to a rug
random potential landscape. The average mean-squared
placement̂ RF

2(L)& is computed by averaging over 10 00
samples, and the error is estimated by computing the s
dard deviation of 10 sets of 1000 samples.

We were able to find numerical solutions to the nonline
stationarity equations. We found that for a given set of p
rameters there is a chain lengthLc ~which depends on the
strength of the disorder! such that for 0,L,Lc there is only
a replica symmetric solution. This is the case when the va
tional parameters satisfyxc51 ands05s1. ForL.Lc , there
is still a replica symmetric solution, but we also find an a
ditional replica symmetry-breaking solution. So in this r
gime, we find an additional solution such that 0,xc,1 and
s0Þs1. In order to decide which solution correctly describ
the physics in that regime, we compare their respective p
dictions to the lattice computation of^RF

2(L)& and^RQ
2 (L)&.

In Fig. 2 we plot the mean-squared displacement^RF
2(L)&

vs L for a given set of parameters. We plot this quant
using the lattice result, and also using the two predictions
the variational method. Note that in the labels of the plo
the average over the disorder is denoted by a second s
brackets rather than an overbar.

For L below Lc'0.73, there is only a RS solution that
very close to the lattice prediction. ForL greater thanLc the
RS and RSB solutions are different and it is clear that
RSB solution is closer to the lattice result. We can see t
the end-to-end distance saturates at a constant valueL
increases. This behavior is correctly predicted by the R
solution but not by the RS solution.

We now turn our attention to the quantity^RQ
2 (L)&. In

Fig. 3 we plot^RQ
2 (L)& vs L using the lattice computation

and also using the RS and RSB solutions. We can clearly

FIG. 2. Plot of ^RF
2(L)& vs L. The parameters areM51/2, g

525, b51, j51/A2, andm50.01. The dotted line is generated b
averaging over 10 000 samples on a lattice of sizeS540 with D
50.2. The error bars are found by computing the standard devia
of 10 sets of 1000 samples. The dashed line is the RS solution,
the solid line is the RSB solution.
3-7
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YOHANNES SHIFERAW AND YADIN Y. GOLDSCHMIDT PHYSICAL REVIEW E63 051803
that when the RS solution differs from the RSB solution, t
RSB prediction is closer to the lattice prediction. Again, t
quantity ^RQ

2 (L)& becomes constant for largeL and this is
correctly predicted by the RSB solution. For this quanti
similar results were obtained previously in Refs.@9# and
@15#.

It is clear from Figs. 2 and 3 that the variational meth
with the quadratic ansatz in Eq.~4.5! is quite effective in
describing the physical properties of the polymer chain. T
features predicted by the lattice computation are consis
with a RS solution for chain lengths shorter thanLc and a
RSB solution for chains longer thanLc . In a later section,
we will explore the physical interpretation of the variation
solution and show that it is indeed consistent with the ph
ics of the problem.

B. Localized eigenstates and glassy behavior

In this section we explore, using the lattice computati
the connection between the eigenstates of the Schro¨dinger
equation and the physical properties of the polymer ch
We focus on the probability distribution defined asP(R,L)
5Z(R,R,L)/*Z(R,R,L)dR, which can be interpreted as th
probability of finding a closed polymer chain of lengthL that
passes through the pointR ~for a given realization of the
random potential!. We consider this probability distribution
since it gives the most direct connection between the ch
properties and the eigenfunctions of the Schro¨dinger equa-
tion. In Fig. 4 we plotP(R,L) vs R for four different chain
lengths. We also include a plot of the random poten
sample that is used.

We can see clearly that the probability distributio
evolves from a flat distribution to distributions that a
sharply peaked at various locations in the sample. Also
important feature is that the number of peaks decreases

FIG. 3. Plot of^RQ
2 (L)& vs L. The parameters are the same

those of Fig. 2 except that here we usem50.3. The dotted line is
generated by averaging over 10 000 samples. The error bars
found by computing the standard deviation of 10 sets of 10
samples. The dashed line is the RS solution, and the solid line is
RSB solution.
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increasingL until finally there is only one peak. This implie
that longer chains have a tendency to be found in a
favorable regions in the sample, while short chains can
found with equal probability almost anywhere in the samp
Another observation is that the peaks in the distribution,
the casesL51,10,20, are concentrated around the valleys
the random landscape. This shows that the chain is m
likely to be found in regions of low average potential. As c
be seen, the width of the well is also important.

The results of the previous section can be better und
stood by studying the properties of the eigenfunctions of
Schrödinger equation in a random potential. Using the eige
function expansion in Eq.~3.7! we can see thatP(R,L) is
just a sum of the eigenfunctions squared weighted with
Boltzman factore2bLEm. So the shape ofP(R,L) is depen-
dent on which eigenstates have the dominant weight a
given chain lengthL. In Fig. 5, we plot a representativ
sample of the eigenfunctions for a typical random poten
sample.

In order to get a more general picture of the structure
the eigenfunctions we measure for each eigenfunction
width defined by

wm
2 5E R2Fm

2 ~R!dR2S E RFm
2 ~R!dRD 2

. ~6.1!

This width is closely related to the localization lengthl m
defined earlier. We then average this quantity over ma
realizations of the random potential and in Fig. 6 we plotw̄m
vs m.

It is clear that asm is increased the width of the eigen
functions also increase. Clearly, on average, the ground s
is the state with the smallest width. This explains why t
distribution P(R,L) evolves with L into fewer and fewer
sharply localized peaks. This is just because the low-ene
eigenfunctions are sharply localized and they dominate
partition sum asL is increased. The higher excited stat

are
0
he

FIG. 4. Plot ofP(R,L) vs R for four values ofL. The bottom-
most curve is the random potential sample that is used. From
tom to top we useL50.3,1,10,20. The parameters are the same
those used for Fig. 2.
3-8
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LOCALIZATION OF A POLYMER IN RANDOM MEDIA: . . . PHYSICAL REVIEW E 63 051803
have typically large localization lengths, and these are
states that dominate the partition sum whenL is short. For
the lowest states, we have verified the relationwm

2 ;1/uEmu .

In Fig. 7 we plotw̄m
2 uĒmu vs m for the lowest ten eigenfunc

tions and show that it is nearly constant in agreement w
Eq. ~3.6!.

We now consider the role of the eigenfunctions on av
aged quantities such as^RF

2(L)& and ^RQ
2 (L)&. In order to

study the effect of the eigenfunctions on^RF
2(L)& we trun-

cate the sum over eigenstates(0
N to (0

j in the eigenfunction
expansion in Eq.~3.9!. So by changing the indexj we can
see how the average end-to-end distance depends on
many eigenfunctions are kept in the expansion. In Fig. 8
plot the average end-to-end distance^RF

2(L)& for a number
of different j values. As expected, the flat portion of th

FIG. 5. Plot ofFm
2 (R) vs R. From bottom up we plot the eigen

functions withm50,10,19,39. We use a lattice of sizeS540 with
D50.133. All other parameters are the same as that of Fig. 2.

FIG. 6. Plot ofw̄m vs m. We use a lattice of sizeS540 with

D50.133 and plotw̄m for the first 75 eigenstates. We use 10 0
samples and the parameters are the same as that of Fig. 2.
05180
e

h
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ow
e

graph whenL is large, is entirely due to the ground-sta
contribution. So the constant^RF

2(L)& is just a consequenc
of ground state dominance. This is consistent with the res
in Sec. III where we showed that for long chains^RF

2(L)&
52d(d11)(l gs

2 ), which is indeed independent ofL. We can
also see that the curved portion of the curve correspond
the case before ground-state dominance when a numbe
tail states contribute to the partition sum. For smallL we see
that more than ten eigenfunctions are needed in order to
ture the correct behavior of^RF

2(L)&.
As discussed in the previous paragraphs, it is clear

the evolution of the partition sum is dependent on the nat
of the eigenfunctions. Consequently, the sample-to-sam

FIG. 7. Plot ofw̄m
2 uĒmu vs m for the lowest ten eigenfunctions

We average over 10 000 samples and the parameters are the sa
that of Fig. 2.

FIG. 8. Plot of^RF
2(L)& vs L. The thick solid line is computed

using all the eigenfunctions. The thin solid line is found usi
only the ground state. The long dashed line is using the first
eigenfunctions and the short dashed line is using the first
eigenfunctions.
3-9
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YOHANNES SHIFERAW AND YADIN Y. GOLDSCHMIDT PHYSICAL REVIEW E63 051803
variation of quantities such aŝRF
2(L)&V and ^RQ

2 (L)&V are
also crucially dependent on the eigenfunctions. Th
sample-to-sample variations are important since they pro
a measure of the glassiness of the system. In Fig. 9 we
the relative sample-to-sample fluctuationsDF /^RF

2(L)& vs L.
It is clear again that as the length of the chain is increas

the sample-to-sample fluctuations also increase. Compa
Fig. 9 with Fig. 8, it is clear that the sample-to-sample flu
tuations increase rapidly at the same approximate valueL
at which the low-energy eigenstates begin to dominate
behavior of̂ RF

2(L)&. The reason for this is that distribution
dominated by localized states are strongly sample depend
On the other hand, whenL is small and the high-excited
states dominate, the sample-to-sample fluctuations are s
since the shape of the extended states do not depend str
on the random sample. So we can conclude that for a p
mer in short range correlated random media, the glassy c
acteristics are directly related to the dominance of locali
eigenfunctions.

C. Analysis of ŠRT
2
„L …‹

We will now consider the end-to-end distance^RT
2(L)&.

Since one end is tethered to the origin, it turns out that
quantity behaves very differently from the quantiti
^RF

2(L)& and ^RQ
2 (L)&. The replica variational approach de

scribed in Sec. IV is not adequate in this case, and hence
will only present the results of the lattice computation.

For short-range correlations, we found that the numer
method described in Sec. V was unreliable. The reason
this is that the sum over energy eigenfunctions in Eq.~3.3! is
unstable since the overlapFm(R)Fm(R8) ~for short range
correlations! is a number on the order of exp(2uR2R8u/l m)
which is typically extremely small. However, we were ab
to evaluate Eq.~3.3! accurately for smallj by solving the
Schrödinger equation on a lattice using a fourth-ord
Runge-Kutta algorithm with a very small time stept

FIG. 9. Plot ofDF /^RF
2(L)& vs L. The parameters are the sam

as in Fig. 2 and we average over 1000 samples.
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;1023). We performed the computation on a large syst
(S5160,N5800) in order to minimize finite-size effects.

In Fig. 10 we plot ^RT
2(L)& vs L and also include

^RT(L)&V
2 vs L for five typical samples. Notice that for

given sample, the end-to-end distance^RT(L)&V
2 has a ten-

dency to change rapidly and then remain constant. As
cussed in Sec. III, this is simply a consequence of hopp
between localized states. That is, the free end of the poly
rapidly finds a deep well~which is also a localization center!
and stays there. Upon averaging over 10 000 random sam
we find that^RT

2(L)& grows linearly withL for small L but
scales faster than diffusion for largeL. The diffusive behav-
ior when L is small is not surprising since a short cha
should not be affected by the random media. The cla
based on Flory type arguments@4,5# is that ^RT

2(L)&
;L2/@ ln(L)#g whenL is large. However, we were not able t
extract a consistent exponentg for the range ofL that we
explored. The reason for this is that our data is not accu
enough to detect the precise logarithmic correction to s
ing. However we went ahead and tried to find the best po
law fit ^RT

2(L)&}Ln for large L. We found that for 5&L
&25, the exponentn'1.74 yielded an excellent fit to the
data. This result is consistent with the sub-ballistic predict
as it is very close but slightly less than ballistic scaling (L2).

D. Analysis of the variational solution

So far we have seen that the glassy characteristics
polymer in a short-range correlated random potential
closely related to the dominance of low-energy eigenfu
tions. We also know that the variational solution possess
RS solution forL,Lc and an RSB solution forL.Lc . It is
well known that replica symmetry breaking is typically a

FIG. 10. Plot of̂ RT
2(L)& vs L. The full circles are generated b

averaging over 10 000 samples, and the error bars are foun
computing the standard deviation of 10 sets of 1000 samples.
dashed lines are plots of^RT(L)&V

2 vs L for five typical samples.
The parameters are the same as in Fig. 2, only that here the sy
size is four times larger (S5160) and we setm50. We use a lattice
of 800 sites withD50.2.
3-10
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LOCALIZATION OF A POLYMER IN RANDOM MEDIA: . . . PHYSICAL REVIEW E 63 051803
sociated with glassy behavior, and for our model we sh
that the onset of RSB is precisely when the system begin
exhibit glassy behavior. The variational parameter that b
reveals the transition between RS and RSB is the break p
xc . If xc51, then there is only an RS solution, and if
,xc,1, then that corresponds to an RSB solution. In Fig.
we plotxc vs L using the same parameters that were use
Fig. 2.

We can see that the onset of the RSB solution is atLc

'0.73. If we compare this result to the plot ofDF /^RF
2(L)&

vs L in Fig. 9, we see that nearLc'0.5 the sample-to-sampl
fluctuations begin to rise rapidly. This result provides stro
evidence that when the RSB solution is valid, the polym
chain does indeed exhibit glassy behavior.

In Ref. @7#, approximate analytical solutions to the vari
tional equations were found. This was for the case of largL,
small m, and a delta correlated random potential (j→0). It
was found that

xc5
1

L S dd22

~2p!d
g2bd14Mdu ln mud22D 21/(42d)

. ~6.2!

We checked theL dependence ofxc in Fig. 11 and indeed we
found thatxc}1/L. In fact, we found that this 1/L depen-
dence is quite robust as it holds whenever there is a one-
RSB solution. In a later section we will analyze the physi
consequences of this behavior and show that it can be sim
explained via the path integral mapping to the Schro¨dinger
equation.

In Fig. 12, we plot the parameterl vs L. The discontinu-
ity is of course atLc , after which we plot only the one-ste
RSB solution. Notice that forL.Lc l is essentially con-
stant, which by Eq.~4.9! implies that^RF

2(L)& is also con-
stant. This result is consistent with the approximate anal
cal solution in Ref.@7#, where it was found that

FIG. 11. Plot ofxc vs L. The parameters are the same as th
used in Fig. 2.
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l5
d4/(42d)

~2p!2d/(42d)
~b2M !(41d)/(42d)~gu ln mu!4/(42d),

~6.3!

which is a constant independent ofL.

VII. PHYSICAL INTERPRETATION
OF THE ONE-STEP RSB SOLUTION

In this section, we study the physical interpretation of t
replica symmetry breaking solution. Our purpose is to se
the underlying physical picture predicted by one-step RSB
indeed consistent with the presence of exponentially loc
ized eigenstates. We begin by evaluating the replicated
tition sum defined as

Z̃n~$Ra%!5E
Ra(0)5Ra

Ra(L)5Ra

)
a51

n

@dRa#exp~2bhn!, ~7.1!

where hn is the quadratic trial Hamiltonian in Eq.~4.5!.
Since hn is quadratic, the path integrals can be evalua
analytically and the final result can we written in the form

Z̃n~$Ra%!5const.3expS 2
1

2 (
ab

Qab
21Ra•RbD . ~7.2!

The details of this calculation along with the relationsh
between the matricesQab andpab are given in the Appendix.
Now, sincepab was parametrized according to the one-s
RSB scheme, it implies thatQab can also be parametrized i
the same way.

Mezard and Parisi@20# ~see also Ref.@21#! discuss the
interpretation of a representation of the form~7.2! for the
case of directed polymers. In particular they show how
deduce the structure of the probability distribution

PV~R!5Z̃V~R,L !Y E dRZ̃V~R,L !, ~7.3!

e FIG. 12. Plot ofl vs L. The parameters are the same as tho
used in Fig. 2.
3-11
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YOHANNES SHIFERAW AND YADIN Y. GOLDSCHMIDT PHYSICAL REVIEW E63 051803
which is the probability of finding a polymer loop that pass
throughR for a given realization~which we denote byV) of
the random potential. Here,Z̃V(R,L) is just the partition sum
Z(R,R;L) as given in Eq.~2.4!. This probability is related to
the replicated partition function given in Eq.~7.1! by

PV~R!5 lim
n→0

E dR2•••dRnZ̃n~$Ra%!R15R . ~7.4!

Mezard and Parisi’s analysis has to be adapted for the ca
real~nondirected! polymers of lengthL in a random potentia
that is independent of time. The changes will be pointed
below.

If Qab is parametrized by$q̃,q(x)% such that

q~x!5H q0 x,xc

q1 x.xc ,
~7.5!

one proceeds to obtainPV(R) by the following procedure:

~1! For each sample~a realization of the random potentia!
generate a random variableR0 that is picked from the
distribution

P~R0!5
1

~2pq0!d/2
expS2 R0

2

2q0
D . ~7.6!

~2! Consider a set of ‘‘states’’ labeled by the indexa whose
physical meaning will be elucidated shortly. Each
these states is characterized by a weightWa and a posi-
tion variable Ra . Given R0, the variablesRa are an
infinite set of uncorrelated random variables distribu
according to

P~Ra!5
1

@2p~q12q0!#d/2
expS2 ~Ra2R0!2

2~q12q0! D .

~7.7!
The distribution of weights will be discussed below.

~3! Given these ‘‘states’’ for a given sample, the probabil
distributionPV(R) for that sample has the form

PV~R!5(
a

Wa

1

@2p~ q̃2q1!#d/2
expS 2

~R2Ra!2

2~ q̃2q1!
D .

~7.8!

The weightsWa are given in terms of some ‘‘free en
ergy’’ variablesf a :

Wa5
exp~2b f a!

(
g

exp~2b f g!

. ~7.9!

These free energy variables are chosen from an expone
distribution

P@ f a#}exp~xcb f a!u~ f̄ 2 f a!, ~7.10!

where f̄ is an upper cutoff.
05180
s

of

t

f

d

tial

What is the meaning of these variables in the pres
case? To determine the weightsWa , we compare Eq.~7.8!
to the eigenfunction expansion given in Eq.~3.7!. From Eq.
~3.7! together with Eq.~7.3! it becomes clear that

PV~R!5(
a

AauFa~R!u2, ~7.11!

where

Aa5
exp~2bLEa!

(
g

exp~2bLEg!

. ~7.12!

Comparing Eq.~7.8! and Eq.~7.12! it becomes obvious tha

Wa5Aa , ~7.13!

and

Fa
2~R!}expS 2

~R2Ra!2

2~ q̃2q1!
D . ~7.14!

Hence, the ‘‘states’’ labeled bya are, in our case, the actua
eigenstates of the imaginary time Schro¨dinger operator Eq.
~3.4!. These are localized tail states centered at positionRa
with an associated ‘‘weight’’Wa . Thus, the one-step RSB
solution approximates the tail states by a fixed Gauss
form. The width of these Gaussians (w0) as defined by Eq.
~6.1! satisfies w0

25d(q̃2q1), which for large L can be
shown to converge tow0

2;d/(2bAlM ) ~see Appendix!.
Sincel becomes constant for largeL then so does the width
w0. Thus, the one-step RSB solution approximates all
localized states by a Gaussian of constant widthw0, which is
the typical size of a long Gaussian chain embedded i
random potential. It also becomes evident that the free e
gies f a are equal toLEa . This makes sense if we think o
uEau as representing the binding energy per monomer,
thus, f a5LEa represents the total energy of the chain. A
ternatively, one can start with the quantum particle pictu
and identify f a with Ea but then in the transformation from
a quantum particle to a polymer one has to replaceb by bL,
and thus, ends up with the same expressions.

These arguments lead us to expect that within the o
step RSB scheme, the energy variablesEa are independen
random variables taken from an exponential distribution:

P@Ea#}ebLxcEau~Ē2Ea!, ~7.15!

with Ē being some energy scale determined by the up
cutoff of the tail region. We will now argue that the distr
bution given above is just the expected distribution
ground-state energies, i.e., the probability of finding the lo
est energy level to have energyE. We first review some very
basic results of extreme value statistics as presented in
@24#. Given K independent and identically distributed ra
dom variablesEi , pulled from a distribution of the form
3-12
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P̃~E!5
A

uEua
exp~2BuEud!, ~7.16!

the probability that the lowest of theK energies isE ~for E
→2` andK→`) is given by

P~E!}exp@BduEcud21E#, ~7.17!

where

Ec52S ln~K !

B D 1/d

. ~7.18!

The value ofEc , the lowest energy expected to be attain
in K trials, is easily obtained from

E
2`

Ec
dEP̃~E!.1/K. ~7.19!

The reason why we chose a distribution of the form giv
in Eq. ~7.16! is that ind51 the probabilityP̃(E) is known to
have that form exactly for the case of delta correlated r
dom potentials~see Ref.@18#!. For d.1, Lifshits et al. @25#
argued that the form given by Eq.~7.16! is also valid. Our
goal now is to see if the distribution Eq.~7.15! derived using
the one-step RSB solution is indeed consistent with the
tribution Eq.~7.17! predicted using extreme value statistic

Comparing Eq.~7.15! and Eq.~7.17! we find that for con-
sistency, the break point should satisfy

xc5
d

bL
B1/d@ ln~K !# (d21)/d. ~7.20!

Notice that the 1/L behavior ofxc is exactly the same as wa
found analytically for largeL in Ref. @7# and numerically for
any L.Lc in the present work.

We can go further by using the fact that the number
energy levelsK, within a fixed energy interval is directly
proportional to the system size, which in our formulation
effectively determined bym. Assuming ln(K)}uln(m)u and
comparing to the approximate solution forxc in Eq. ~6.2! we
find thatd5(42d)/2 andB}1/g. Now P̃(E) is just propor-
tional to the density of statesr(E), and it is known exactly
in one dimension. Indeed, whend51, d53/2, andB}1/g.
For 2<d,4, d agrees with the result derived by Lifshi
et al. @25# and Zittartz and Langer@26#. Hence, the exponen
d and the disorder dependence ofB is correctly predicted by
the one-step RSB solution. The exponenta cannot be found
since the statistics of the lowest energy depends only on
exponential tail.

The one-step RSB solution is thus in agreement with
~7.17!. Since xc}1/L then the distribution of the energie
predicted from Eq.~7.15! is independent ofL. Note also that
the value ofEc that gives a typical lowest energy for a give
volume of the system coincides with the expected va
given in Eq.~2.7! when one substitutes forB;1/g, d5(4
2d)/2 and lnK;ln V in Eq. ~7.18!. The localization length,
that is the width of a localized state, is known to be related
the energy of the state by
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bu2MEu1/2
, ~7.21!

where the mapping\→1/b from the particle to the polyme
problem has been used. If we useEc for the value of the
lowest energy in a volumeV we get an estimate forRF , the
radius of gyration of a free chain that is in agreement w
Eq. ~2.6!.

When L→` most of the weightsWa→0 and only the
weight with the lowestEa will contribute significantly to the
distributionPV(R). So in this limit,PV(R) will be approxi-
mated by a single Gaussian located somewhere in
sample. This result is consistent with ground-state do
nance as predicted by the corresponding eigenfunction
pansion.

We now consider the distributionP(Ra) given in Eq.
~7.7!. This is just the distribution for the localization cente
Ra for a given value ofR0. Hence, we can calculate th
average distance between the localized states for a g
sample. We find that the widthw of the GaussianP(Ra)
satisfiesw25d(q12q0). For smallm and largeL we find
~see Appendix! that w2'd/(bmLxc). Using the analytical
approximation forxc we find that

w2;
1

m
g2/(42d)u ln~m!u(d22)/(42d). ~7.22!

We can also find the average distance from the origin t
localization centerRa . To do this we have to compute th
average probability to find a localization center atRa . This
is

P̄~Ra!}E dR0exp@2R0
2/~2q0!#

3exp@2~Ra2R0!2#/@2~q12q0!#

5exp@2Ra
2/~2q1!#. ~7.23!

If we estimate the average distance to a localization cente
be the width of the GaussianP̄(Ra), then w25dq1
'd/(bmLxc) which is the same as the average distancew
between tail states derived above. This is because the
tuations ofR0 are small compared to the fluctuations ofRa
2R0 when the volume is large. Notice that this result
consistent with our calculation for̂RQ

2 (L)& in Eq. ~4.10!,
since for L large ^RQ

2 (L)&;d/(bmLxc). These quantities
should be close since both give an approximation to the
erage distance to the ground state localization center.

So far, we have studied the physical interpretation of
one-step RSB solution, but recall that forL,Lc , there was
only a RS solution. It is interesting to study the physic
implications of this RS solution. In this case, the probabil
distributionPV(R) will have the simple form

PV~R!5
1

@2p~ q̃2q0!#d/2
expS 2

~R2R0!2

2~ q̃2q0!
D , ~7.24!

where the variableR0 is taken from the distribution
3-13
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P~R0!5
1

~2pq0!d/2
expS 2

R0
2

2q0
D . ~7.25!

Notice that for a given sample,PV(R) is approximated by a
Gaussian shifted from the origin by a distanceR0. The width
of this Gaussian can be shown to be essentially indepen
of disorder in the limitm→0, as the widthw0 satisfiesw0

2

;d(bmL)21, which is the result for the case of zero diso
der. The average shift from the origin can be estimated
the width w1 of the Gaussian in Eq.~7.25!, which satisfies
w1

2;gb (d12)/2L (d12)/2m (d22)/2, for the case of delta correla
tions and large volume (m→0). This result is similar to tha
found for the case of long-range correlated random medi
which it was found that the only effect of disorder is to sh
the center of mass of the polymer chain from the origin.

We can conclude that the physical interpretation of
one-step RSB solution is consistent with that given by
eigenfunction expansion. Clearly, the one-step RSB solu
captures the localized states and also correctly predicts s
important features of the eigenvalue distribution. Howev
there are differences and these reveal the limitations of
one-step RSB solution. For example, all the localized sta
are approximated by the same Gaussian profile when in
the localization lengths should increase with energy.

VIII. CONCLUDING REMARKS

The findings in this paper allow us to give a fairly com
plete description of a polymer in random medium. We fi
that the size of a short polymer chain behaves as if ther
no disorder, but that the position of the center of mass of
chain is strongly affected by the random media. Applying
replica variational method, we find that short chains are w
described by a RS solution. Also, using an eigenfunct
expansion we show that the partition sum of short chain
dominated by extended eigenstates. For long chains,
physical picture becomes more interesting and complex.
find that long chains are likely to be localized in regions
the sample where there is very low potential energy. Th
regions correspond to localized tail states of the correspo
ing Schrödinger equation. As the length of the chain i
creases, the number of dominant conformations decrea
until finally, the chain is essentially localized in one sm
region, consistent with ground-state dominance. In terms
the mapping from a chain to a quantum particle, a big ch
length corresponds to a very low temperature for the qu
tum particle.

We show that the onset of the variational RSB solution
the stationarity equations corresponds to the dominanc
localized tail states. This one-step RSB solution correc
describes the glassy characteristics of the polymer chain
as large sample-to-sample variations. We have demonstr
the clear physical picture associated with the abstract R
solution.

Our analysis also suggests a direct connection betw
the size of a polymer in a random potential with short-ran
correlations, and the localization length associated with
lowest energy state in a system of finite volumeV. Given the
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density of statesr(E), we can estimate the lowest energyEc
by

E
2`

Ec
dEr~E!.1/V. ~8.1!

The size of a free Gaussian chain, in the long chain limit
then given by

RF;uEcu21/2. ~8.2!

It is remarkable that starting from an annealed average~the
density of states involves the average of the partition fu
tion! and using extreme value statistics plus the known re
tionship between the localization length and the value of
tail state energy, we can predict the behavior of a quenc
average like the chain size.

It is well known that glassy systems are notoriously d
ficult to simulate using the Monte Carlo method since equ
bration times are exceedingly large. In the context of a po
mer chain in a random medium, we expect that a long ch
will get trapped in the deep wells of the random potential a
any local updating procedure, such as the Metropo
scheme, will not be able to find the true minimum ener
configurations in a reasonable time. A workaround is to us
simulated annealing procedure@15,21#. Of course, these
traps are just those regions of the sample where an eigen
would be localized. They correspond to localized states w
energies above the true ground state that exists for a fin
size system. Since the partition sum for a long chain is do
nated by localized tail states, those chain configurations
are in the vicinity of such a state are overwhelmingly mo
favorable than other configurations. All the classic charac
istics of a glassy system emerge~like trapping, metastability,
aging!, and they have a clear physical origin in terms of t
localization picture.
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APPENDIX

In this appendix we derive the relation between the ma
pab @see Eq.~4.7!# characterizing the variational hamiltonia
and the matrixQab defined in Eq.~7.2!. We start from

Zn~$Ra8%,$Ra%;L !5E
Ra(0)5Ra8

Ra(L)5Ra

)
a51

n

@dRa~u!#exp~2bhn!,

~A1!

with
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hn5
1

2E0

L

du(
a

FM S dRa~u!

du D 2

1lRa
2~u!G

1
1

2LE0

L

duE
0

L

du8(
ab

pabRa~u!•Rb~u8!. ~A2!

Let Oab be an orthogonal matrix that diagonalizespab by a
similarity transformation, and letpc , c51, . . . ,n be the ei-
genvalues ofpab . We can expressZn in the form

Zn5E )
c

dlcexpS 2(
c

lc

2 D E
Ra(0)5Ra8

Ra(L)5Ra

)
a51

n

@dRa~u!#

3exp@2bhn~$lc%!#, ~A3!

with

hn~$lc%!5
1

2E0

L

du(
a

FM S dRa~u!

du D 2

1lRa
2~u!

1(
c

A2pc /~bL !Oaclc•Ra~u!G . ~A4!

The path integral can now be carried out using Eqs.~3.39–
3.41! in Ref. @16#. The result is

Zn5E )
c

dlcexpS 2(
c

lc

2 D e2bF, ~A5!

where

F5AS ( Ra
21( Ra8

2D1BS ( Ra1( Ra8 D •Va

12C( Ra•Ra81D( Va
2 , ~A6!

with

A5
1

2
AlMcoth~LAl/M ! ~A7!

B5AlM @cosh~LAl/M !21#@sinh~LAl/M !#21 ~A8!

C52
1

2
AlM @~sinh~LAl/M !#21 ~A9!

D5B2Ll/2, ~A10!

Va5
1

l (
c

A2pc /~bL !Oaclc . ~A11!

Notice that

(
a

Va
252

1

l2bL
(

a
pala

2 . ~A12!

We now putRa5Ra8 and integrate out overlc to obtain
05180
Zn~$Ra%,$Ra%;L !5NexpS 22b(
ab

@~A1C!dab

2bB2Mab#Ra•RbD , ~A13!

with

M5
1

2bD S 12
l2L

2D
p21D 21

. ~A14!

Here we denoted by1 the unitn3n matrix, andp stands for
the matrixpab . Comparing with Eq.~7.2! we find that

Qab5
1

4b
$@~A1C!12bB2M#21%ab . ~A15!

In the Appendix of Ref.@20# one can find a formula for
the inverse of a hierarchical matrix. For the one-step R
case, the inverse of a matrixp5$ p̃,p0 ,p1% is given by q
5p21 where

q̃5
1

@ p̃2p0xc2p1~12xc!#
S 12

p0

p̃2p0xc2p1~12xc!

2
~p12p0!~12xc!

p̃2p1
D , ~A16!

q052
p0

@ p̃2p0xc2p1~12xc!#
2

, ~A17!

q152
1

p̃2p0xc2p1~12xc!
S p12p0

p̃2p1

1
p0

p̃2p0xc2p1~12xc!
D . ~A18!

In the limit of largeL we have

A→ 1

2
AlM , ~A19!

B→AlM , ~A20!

C→0, ~A21!

D→2
Ll

2
1AlM . ~A22!

In addition we use the one-step breaking results found
Ref. @7#. Evaluating the matrixQ in the limit of smallm we
find to leading order
3-15
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q̃5
1

Lxcbm
1

s0

Lbm2
1

1

2bAMl
1•••, ~A23!

q05
s0

Lbm2
1•••, ~A24!

q15
1

Lxcbm
1

s0

Lbm2
1••• ~A25!
.

ite

s

05180
with the parametersl andxc given in Eqs.~4.13! and~4.14!,
respectively, ands0 is given approximately by Ref.@7#

s05const.3g(22d)/4bL~bAMl!2d(d12)/8

3md/211u ln mu(d12)/4. ~A26!

We have also used the fact thatS5l in this limit.
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